Volume 50 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LI J,YANG D K,HONG X B,et al. Soil moisture algorithm testing of interference signal inversion with GNSS linearly polarized antenna[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):874-885 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0282
Citation: LI J,YANG D K,HONG X B,et al. Soil moisture algorithm testing of interference signal inversion with GNSS linearly polarized antenna[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):874-885 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0282

Soil moisture algorithm testing of interference signal inversion with GNSS linearly polarized antenna

doi: 10.13700/j.bh.1001-5965.2022.0282
Funds:  National Natural Science Foundation of China (42104031)
More Information
  • Corresponding author: E-mail:wangf.19@163.com
  • Received Date: 26 Apr 2022
  • Accepted Date: 30 Jul 2022
  • Publish Date: 08 Aug 2022
  • Using global navigation satellite system Interferometric reflectometry (GNSS-IR) to measure soil moisture has become a prominent research topic. Smartphones equipped with low-cost linearly polarized antennas can easily and quickly acquire the signal noise ratio (SNR) of interference signals. The GNSS interference signals collected by the vertical and horizontal linearly polarized antennas are simulated separately, with the results of the SNR waveform and reflectivity of the interference signals changing with the satellite altitude angle under the two polarization modes. For the vertically polarized component, the electromagnetic wave is totally transmitted at the incident angle of about 65~85°, resulting in the disappearance of the oscillation effect of the interference signal. However, this phenomenon does not exist in the horizontal polarization. Then, the GNSS signals collected by the right-handed circle polarized (RHCP) direct and left-handed circle polarized (LHCP) reflective antennas are simulated separately, and the amplitude ratio of the direct reflection signal is calculated. Based on the simulation, experiments were carried out with different polarized antennas. Results show that the oscillation effect of the GNSS interference signal collected by the linearly polarized antenna is barely limited by the satellite altitude angle, providing more effective data for soil moisture inversion. The soil moisture obtained by the inversion is in good agreement with that of the isotopic data, and their correlation reaches 0.95. A dual-channel receiver equipped with a circularly polarized antenna is used to collect Beidou satellite data for comparison, revealing a correlation of 0.91. For different devices, the occupied space of the GNSS data collected by the smartphone is reduced to 1% compared with that of the dual-channel receiver, and the correlation of the inversion results is close. Since the interference signal needs a certain oscillation period to extract the direct reflection signal, the inversion results show a lower time resolution than that of a dual-channel receiver.

     

  • loading
  • [1]
    严颂华, 张训械. 基于GNSS-R信号的土壤湿度反演研究[J]. 电波科学学报, 2010, 25(1): 8-13. doi: 10.13443/j.cjors.2010.01.004

    YAN S H, ZHANG X X. Retrieving soil moisture based on GNSS-R signals[J]. Chinese Journal of Radio Science, 2010, 25(1): 8-13(in Chinese). doi: 10.13443/j.cjors.2010.01.004
    [2]
    WANG Z M, JIA M M, MAO D H, et al. Remote sensing of spatial distribution of wetlands in Northeast China, 1990-2013[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2016: 3539-3542.
    [3]
    王笑蕾, 何秀凤, 陈殊, 等. 地基GNSS-IR风速反演原理及方法初探[J]. 测绘学报, 2021, 50(10): 1298-1307. doi: 10.11947/j.AGCS.2021.20200586

    WANG X L, HE X F, CHEN S, et al. Preliminary study on theory and method of ground-based GNSS-IR wind speed[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1298-1307(in Chinese). doi: 10.11947/j.AGCS.2021.20200586
    [4]
    宋敏峰, 何秀凤. 基于GNSS-IR技术高精度水库水位监测研究[J]. 无线电工程, 2021, 51(10): 1099-1103. doi: 10.3969/j.issn.1003-3106.2021.10.013

    SONG M F, HE X F. High-precision reservoir water level monitoring based on GNSS-IR technology[J]. Radio Engineering, 2021, 51(10): 1099-1103(in Chinese). doi: 10.3969/j.issn.1003-3106.2021.10.013
    [5]
    齐中华, 杨春全, 徐丽丽. 星差分GPS接收机精度测试与在地形测绘方面的应用探索[J]. 测绘与空间地理信息, 2014, 37(8): 217-219. doi: 10.3969/j.issn.1672-5867.2014.08.073

    QI Z H, YANG C Q, XU L L. Star-based differential GPS receiver precision testing and application of exploration in terms of topographic mapping[J]. Geomatics & Spatial Information Technology, 2014, 37(8): 217-219(in Chinese). doi: 10.3969/j.issn.1672-5867.2014.08.073
    [6]
    李立勋. 高精度导航接收机天线技术研究[D]. 长沙: 国防科学技术大学, 2016: 8.

    LI L X. Research on antenna technique for high accuracy navigation Receiver[D]. Changsha: National University of Defense Technology, 2016: 8(in Chinese).
    [7]
    王颖喆, 陶贤露, 朱锋, 等. 利用智能手机实现GNSS原始观测值的高精度差分定位[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1941-1950.

    WANG Y Z, TAO X L, ZHU F, et al. High accuracy differential positioning with smartphone GNSS raw measurements[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1941-1950(in Chinese).
    [8]
    甘彤, 马冠一. 双线性极化天线的扩频信号合成捕获[C]//第三届中国卫星导航学术年会电子文集-S07北斗/GNSS用户终端技术. 北京: 中国卫星导航系统管理办公室学术交流中心, 2012: 43-47.

    GAN T, MA G Y. Spread spectrum signal’s synthesis and acquisition algorithm based on dual-linear polarized antenna[C]//The Third Annual China Satellite Navigation Symposium e-Proceedings-S07 Beidou/GNSS User Terminal Technology. Beijing: Academic Exchange Centre of China Satellite Navigation System Administration Office, 2012: 43-47(in Chinese).
    [9]
    王式太, 杨诗妮, 李雪珍. 单双频智能手机GNSS定位精度分析[J]. 测绘通报, 2021(1): 18-23. doi: 10.13474/j.cnki.11-2246.2021.0004

    WANG S T, YANG S N, LI X Z. Analysis of GNSS positioning accuracy of single and dual frequency smart phone[J]. Bulletin of Surveying and Mapping, 2021(1): 18-23(in Chinese). doi: 10.13474/j.cnki.11-2246.2021.0004
    [10]
    LARSON K M, SMALL E E, GUTMANN E, et al. Using GPS multipath to measure soil moisture fluctuations: Initial results[J]. GPS Solutions, 2008, 12: 173-177. doi: 10.1007/s10291-007-0076-6
    [11]
    ZAVOROTNY V U, LARSON K M, BRAUN J J, et al. A physical model for GPS multipath caused by land reflections: Toward bare soil moisture retrievals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1): 100-110. doi: 10.1109/JSTARS.2009.2033608
    [12]
    汉牟田, 张波, 杨东凯, 等. 利用GNSS干涉信号振荡幅度反演土壤湿度[J]. 测绘学报, 2016, 45(11): 1293-1300. doi: 10.11947/j.AGCS.2016.20160145

    HAN M T, ZHANG B, YANG D K, et al. Soil moisture retrieval utilizing GNSS interference signal amplitude[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11): 1293-1300(in Chinese). doi: 10.11947/j.AGCS.2016.20160145
    [13]
    ROUSSEL N, FRAPPART F, RAMILLIEN G, et al. Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2° to 70°[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4781-4794. doi: 10.1109/JSTARS.2016.2537847
    [14]
    邹文博, 张波, 洪学宝, 等. 利用北斗GEO卫星反射信号反演土壤湿度[J]. 测绘学报, 2016, 45(2): 199-204. doi: 10.11947/j.AGCS.2016.20150135

    ZONG W B, ZHANG B, HONG X B, et al. Soil moisture retrieval using reflected signals of BeiDou GEO satellites[J]. Acta Geodaeticaet et Cartographica Sinica, 2016, 45(2): 199-204(in Chinese). doi: 10.11947/j.AGCS.2016.20150135
    [15]
    YANG T, WAN W, CHEN X W, et al. Using BDS SNR observations to measure near-surface soil moisture fluctuations: Results from low vegetated surface[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1308-1312. doi: 10.1109/LGRS.2017.2710083
    [16]
    荆丽丽, 杨磊, 汉牟田, 等. GNSS-IR双频数据融合的土壤湿度反演方法[J]. 北京航空航天大学学报, 2019, 45(6): 1248-1255. doi: 10.13700/j.bh.1001-5965.2018.0555

    JING L L, YANG L, HAN M T, et al. Soil moisture inversion method based on GNSS-IR dual frequency data fusion[J]. Journal of Beijing University of Aeronautics and Astronsutics, 2019, 45(6): 1248-1255(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0555
    [17]
    孙波, 张弛, 尹世超, 等. 基于PSO-RF的GNSS-IR土壤湿度反演方法研究[J]. 无线电工程, 2021, 51(10): 1080-1085. doi: 10.3969/j.issn.1003-3106.2021.10.010

    SUN B, ZHANG C, YIN S C, et al. Research on GNSS-IR soil moisture inversion method based on PSO-RF[J]. Radio Engineering, 2021, 51(10): 1080-1085(in Chinese). doi: 10.3969/j.issn.1003-3106.2021.10.010
    [18]
    张志刚, 梁月吉, 任超, 等. 小波多尺度和多星融合的GPS-IR土壤湿度反演[J]. 测绘科学技术学报, 2020, 37(2): 133-137.

    ZHANG Z G, LIANG Y J, REN C, et al. GPS-IR soil moisture inversion combined with wavelet multi-scale and multi-star fusion[J]. Journal of Geomatics Science and Technology, 2020, 37(2): 133-137(in Chinese).
    [19]
    王丽霞, 王涛, 张双成, 等. 基于长时间序列SNR数据的土壤湿度反演[C]//第十一届中国卫星导航年会论文-S01卫星导航行业应用. 北京: 中国卫星导航系统管理办公室学术交流中心, 2020: 94-99.

    WANG L X, WANG T, ZHANG S C, et al. Measurement of soil moisture using long time series data of SNR[C]//Proceedings of the 11th Annual China Satellite Navigation Conference-S01 Satellite Navigation Industry Applications. Beijing: Academic Exchange Centre of China Satellite Navigation System Administration Office, 2020: 94-99(in Chinese).
    [20]
    KOCH F, SCHLENZ F, PRASCH M, et al. Soil moisture retrieval based on GPS signal strength attenuation[J]. Water, 2016, 8(7): 276. doi: 10.3390/w8070276
    [21]
    汉牟田, 杨毅, 张波. GNSS信号土壤衰减模型的试验验证方法[J]. 测绘学报, 2020, 49(9): 1202-1212. doi: 10.11947/j.AGCS.2020.20200259

    HAN M T, YANG Y, ZHANG B. An experimental validation method on GNSS signal attenuation model in soil[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1202-1212(in Chinese). doi: 10.11947/j.AGCS.2020.20200259
    [22]
    陈波, 高成发, 刘永胜, 等. 安卓手机终端原始GNSS观测数据质量分析[J]. 导航定位学报, 2019, 7(3): 87-95. doi: 10.3969/j.issn.2095-4999.2019.03.015

    CHEN B, GAO C F, LIU Y S, et al. Quality analysis on raw GNSS measurements of Android mobile terminals[J]. Journal of Navigation and Positioning, 2019, 7(3): 87-95(in Chinese). doi: 10.3969/j.issn.2095-4999.2019.03.015
    [23]
    KURUM M, FARHAD M M, GURBUZ A C. Integration of smartphones into small unmanned aircraft systems to sense water in soil by using reflected GPS signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1048-1059. doi: 10.1109/JSTARS.2020.3041162
    [24]
    ALTUNTAS C, TUNALIOGLU N. Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data[J]. Digital Signal Processing, 2021, 112: 1051-2004.
    [25]
    张垠, 涂锐, 洪菊, 等. Android智能手机GNSS数据质量分析[J]. 全球定位系统, 2021, 46(4): 85-92. doi: 10.12265/j.gnss.2021042501

    ZHANG Y, TU R, HONG J, et al. Quality assessment of Android smartphone with GNSS raw observations[J]. GNSS World of China, 2021, 46(4): 85-92(in Chinese). doi: 10.12265/j.gnss.2021042501
    [26]
    李惟, 朱云龙, 王峰, 等. GNSS多径信号模型及测高方法[J]. 北京航空航天大学学报, 2018, 44(6): 1239-1245. doi: 10.13700/j.bh.1001-5965.2017.0417

    LI W, ZHU Y L, WANG F, et al. GNSS multipath signal model and altimetry method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1239-1245(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0417
    [27]
    杨东凯, 张其善. GNSS反射信号处理基础与实践[M]. 北京: 电子工业出版社, 2012: 8.

    YANG D K, ZHANG Q S. GNSS reflected signal processing: Fundamentals and applications[M]. Beijing: Publishing House of Electronics Industry, 2012: 8(in Chinese).
    [28]
    苏东林, 陈爱新, 谢树果, 等. 电磁场与电磁波[M]. 北京: 高等教育出版社, 2009: 416-425.

    SU D L, CHEN A X, XIE S G, et al. Electromagnetic fields and waves[M]. Beijing: Higher Education Press, 2009: 416-425(in Chinese).
    [29]
    MARTIN A, IBANEZ S, BAIXAULI C, et al. Multi-constellation GNSS interferometric reflectometry with mass-market sensors as a solution for soil moisture monitoring[J]. Hydrology and Earth System Sciences, 2020, 24(7): 3573-3582. doi: 10.5194/hess-24-3573-2020
    [30]
    杨磊. GNSS-R农田土壤湿度反演方法研究[D]. 济南: 山东农业大学, 2017: 45-56.

    YANG L. Study of GNSS-R cropland soil moisture retrieval method[D]. Jinan: Shandong Agricultural University, 2017: 45-56(in Chinese).
    [31]
    VANDERPLAS J T. Understanding the Lomb-Scargle periodogram[J]. The Astrophysical Journal Supplement Series, 2018, 236(1): 16. doi: 10.3847/1538-4365/aab766
    [32]
    王燕, 薛云朝, 马铁华. 基于EMD和最小二乘法的零漂处理方法研究[J]. 北京理工大学学报, 2015, 35(2): 118-122. doi: 10.15918/j.tbit1001-0645.2015.02.002

    WANG Y, XUE Y Z, MA T H. Research on zero drift processing method using EMD and least-square[J]. Transactions of Beijing Institute of Technology, 2015, 35(2): 118-122(in Chinese). doi: 10.15918/j.tbit1001-0645.2015.02.002
    [33]
    TOPP G C, DAVIS J L, ANNAN A P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3): 574-582. doi: 10.1029/WR016i003p00574
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views(332) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return