Volume 50 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
GUO J F,LIU G H,LIU G W. Prediction method of remaining useful life of aero-engine based on long sequence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):774-784 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0354
Citation: GUO J F,LIU G H,LIU G W. Prediction method of remaining useful life of aero-engine based on long sequence[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):774-784 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0354

Prediction method of remaining useful life of aero-engine based on long sequence

doi: 10.13700/j.bh.1001-5965.2022.0354
More Information
  • Corresponding author: E-mail:Junf_guo@163.com
  • Received Date: 13 May 2022
  • Accepted Date: 12 Aug 2022
  • Available Online: 02 Sep 2022
  • Publish Date: 31 Aug 2022
  • A method for forecasting the remaining useful life of an aero-engine based on a stack-dilated convolution neural network (SDCNN) was presented in order to address the inadequate prediction accuracy of the engine’s useful life with long-sequence data from many sensors.The multi-sensor long sequence data was normalized to eliminate errors caused by different dimensions and value ranges. A prediction objective function was constructed to represent the real degradation of the aero-engine. A degradation prediction model was built, based on SDCNN, and long-term, deep, and global time series features were extracted by expanding the receptive field of the model for regression analysis, and then the remaining useful life prediction result of aero-engine was obtained.The model’s hyperparameters were optimized using the Hyperband optimization algorithm and the StratifiedKFold cross-validation method to increase prediction accuracy and adaptability under various conditions. The commercial modular aero-propulsion system simulation (C-MAPSS) dataset was used to confirm the efficacy of the suggested method. The experimental results based on the FD003 dataset in C-MAPSS show that the proposed method can effectively improve the prediction accuracy of aero-engine remaining life based on long-sequence signals, and the score index to evaluate the prediction accuracy of the model is significantly reduced by 32.62%.

     

  • loading
  • [1]
    林京, 张博瑶, 张大义, 等. 航空燃气涡轮发动机故障诊断研究现状与展望[J]. 航空学报, 2022, 43(8): 626565.

    LIN J, ZHANG B Y, ZHANG D Y, et al. Research status and prospect of fault diagnosis for gas turbine engine[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 626565(in Chinese).
    [2]
    JOZEFOWICZ R, ZAREMBA W, SUTSKEVER I. An empirical exploration of recurrent network architectures[C]//Proceedings of the 32nd International Conference on Machin Learning. New York: PMLR, 2015, 37: 2342-2350.
    [3]
    WANG Y D, ZHAO Y F, ADDEPALLI S. Remaining useful life prediction using deep learning approaches: A review[J]. Procedia Manufacturing, 2020, 49: 81-88. doi: 10.1016/j.promfg.2020.06.015
    [4]
    袁利, 王淑一. 航天器控制系统智能健康管理技术发展综述[J]. 航空学报, 2021, 42(4): 525044.

    YUAN L, WANG S Y. A review on development of intelligent health management technology for spacecraft control systems[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 525044(in Chinese).
    [5]
    曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ:气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573.

    CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: Diagnosis and prognosis of engine gas path, mechanical & FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573(in Chinese).
    [6]
    LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: A systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834. doi: 10.1016/j.ymssp.2017.11.016
    [7]
    GHORBANI S, SALAHSHOOR K. Estimating remaining useful life of turbofan engine using data-level fusion and feature-level fusion[J]. Journal of Failure Analysis and Prevention, 2020, 20(1): 323-332. doi: 10.1007/s11668-020-00832-x
    [8]
    HU Y, BARALDI P, MAIO F D, et al. Online performance assessment method for a model-based prognostic approach[J]. IEEE Transactions on Reliability, 2016, 65(2): 718-735. doi: 10.1109/TR.2015.2500681
    [9]
    王玺, 胡昌华, 任子强, 等. 基于非线性Wiener过程的航空发动机性能衰减建模与剩余寿命预测[J]. 航空学报, 2020, 41(2): 223291.

    WANG X, HU C H, REN Z Q, et al. Performance degradation modeling and remaining useful life prediction for aero-engine based on nonlinear Wiener process[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 223291(in Chinese).
    [10]
    黄亮, 刘君强, 贡英杰. 基于Wiener过程的发动机多阶段剩余寿命预测[J]. 北京航空航天大学学报, 2018, 44(5): 1081-1087.

    HUANG L, LIU J Q, GONG Y J. Multi-phase residual life prediction of engines based on Wiener process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1081-1087(in Chinese).
    [11]
    刘君强, 胡东斌, 潘春露, 等. 基于超统计的多阶段航空发动机剩余寿命预测[J]. 北京航空航天大学学报, 2021, 47(1): 56-64.

    LIU J Q, HU D B, PAN C L, et al. Remaining useful life prediction of multi-stage aero-engine based on super statistics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 56-64(in Chinese).
    [12]
    ORDÓÑEZ C, LASHERAS F S, ROCA-PARDIÑAS J, et al. A hybrid ARIMA-SVM model for the study of the remaining useful life of aircraft engines[J]. Journal of Computational and Applied Mathematics, 2019, 346: 184-191. doi: 10.1016/j.cam.2018.07.008
    [13]
    WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. doi: 10.1109/TR.2018.2882682
    [14]
    CHEN J L, JING H J, CHANG Y H, et al. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process[J]. Reliability Engineering & System Safety, 2019, 185: 372-382.
    [15]
    XIANG S, QIN Y, LUO J, et al. Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction[J]. Reliability Engineering & System Safety, 2021, 216: 107927.
    [16]
    全航, 张强, 邵思羽, 等. 基于CNN-WaveNet的滚动轴承剩余寿命预测[J]. 计算机应用研究, 2021, 38(10): 3098-3103.

    QUAN H, ZHANG Q, SHAO S Y, et al. Remaining life prediction of rolling bearing based on CNN-WaveNet[J]. Application Research of Computers, 2021, 38(10): 3098-3103(in Chinese).
    [17]
    LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
    [18]
    CHADHA G S, PANARA U, SCHWUNG A, et al. Generalized dilation convolutional neural networks for remaining useful lifetime estimation[J]. Neurocomputing, 2021, 452: 182-199. doi: 10.1016/j.neucom.2021.04.109
    [19]
    BAKHTEEV O Y, STRIJOV V V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms[J]. Annals of Operations Research, 2020, 289(1): 51-65. doi: 10.1007/s10479-019-03286-z
    [20]
    LI L, JAMIESON K G, DESALVO G, et al. Hyperband: A novel bandit-based approach to hyperparameter optimization[J]. Journal of Machine Learning Research, 2017, 18(185): 1-52.
    [21]
    车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报, 2021, 57(14): 304-312.

    CHE C C, WANG H W, NI X M, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering, 2021, 57(14): 304-312(in Chinese).
    [22]
    AYODEJI A, WANG Z Y, WANG W H, et al. Causal augmented ConvNet: A temporal memory dilated convolution model for long-sequence time series prediction[J]. ISA Transactions, 2022, 123: 200-217. doi: 10.1016/j.isatra.2021.05.026
    [23]
    VAN DEN OORD A, DIELEMAN S, ZEN H G, et al. WaveNet: A generative model for raw audio[EB/OL]. (2016-09-19)[2022-03-20]. https://arxiv.org/abs/1609.03499.pdf.
    [24]
    胡启国, 白熊, 杜春超. 基于KPCA-BLSTM的航空发动机多信息融合剩余寿命预测[J]. 航空工程进展, 2022, 13(3): 157-170.

    HU Q G, BAI X, DU C C. Remaining useful life prediction of aero-engine multi-information fusion based on KPCA-BLSTM[J]. Advances in Aeronautical Science and Engineering, 2022, 13(3): 157-170(in Chinese).
    [25]
    ANDONIE R. Hyperparameter optimization in learning systems[J]. Journal of Membrane Computing, 2019, 1(4): 279-291. doi: 10.1007/s41965-019-00023-0
    [26]
    AZIZ M, JAMIESON K, ASLAM J. Pure-exploration for infinite-armed bandits with general arm reservoirs[EB/OL]. (2019-01-13)[2022-03-20]. https://arxiv.org/abs/1811.06149.pdf.
    [27]
    XIA Y F, LIU C Z, LI Y Y, et al. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring[J]. Expert Systems with Applications, 2017, 78: 225-241. doi: 10.1016/j.eswa.2017.02.017
    [28]
    FREDERICK D, DECASTRO J A, LITT J. User’s guide for the commercial modular aero-propulsion system simulation (C-MAPSS) TM-2007-215026[R]. Washington, D.C.: SA, 2007.
    [29]
    SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proceedings of the IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 1-9.
    [30]
    HONG C W, LEE K, KO M S, et al. Multivariate time series forecasting for remaining useful life of turbofan engine using deep-stacked neural network and correlation analysis[C]//Proceedings of the IEEE International Conference on Big Data and Smart Computing . Piscataway: IEEE Press, 2020: 63-70.
    [31]
    柳长源, 何先平, 于会越. 基于数据驱动的涡轮发动机剩余寿命预测[J]. 电机与控制学报, 2021, 25(7): 68-74.

    LIU C Y, HE X P, YU H Y. Prediction of remaining life of turbine engine based on data drive[J]. Electric Machines and Control, 2021, 25(7): 68-74(in Chinese).
    [32]
    WANG Q Y, ZHENG S, FARAHAT A, et al. Remaining useful life estimation using functional data analysis[C]//Proceedings of the IEEE International Conference on Prognostics and Health Management . Piscataway: IEEE Press, 2019: 1-8.
    [33]
    YU W N, KIM I Y, MECHEFSKE C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129: 764-780. doi: 10.1016/j.ymssp.2019.05.005
    [34]
    CAI H S, FENG J S, LI W Z, et al. Similarity-based particle filter for remaining useful life prediction with enhanced performance[J]. Applied Soft Computing, 2020, 94: 106474. doi: 10.1016/j.asoc.2020.106474
    [35]
    HOU G S, XU S, ZHOU N, et al. Remaining useful life estimation using deep convolutional generative adversarial networks based on an autoencoder scheme[J]. Computational Intelligence and Neuroscience, 2020, 2020: 1-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views(563) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return