Volume 35 Issue 6
Jun.  2009
Turn off MathJax
Article Contents
Bai Lizhan, Lin Guiping. Mathematical model of small diameter condenser pipes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 665-668. (in Chinese)
Citation: Bai Lizhan, Lin Guiping. Mathematical model of small diameter condenser pipes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 665-668. (in Chinese)

Mathematical model of small diameter condenser pipes

  • Received Date: 26 May 2008
  • Publish Date: 30 Jun 2009
  • Based on the annular flow pattern, the mathematical model of condenser pipes with small diameters was established. The effect of surface tension on the liquid/vapor interface causing the pressure difference between liquid and vapor phases on the same cross section and the interaction between the liquid and vapor phases including the frictional and momentum-transfer shear stresses were considered in the model. The variations of the liquid and vapor phase pressure drops, the thickness of the liquid film, shear stress on the liquid/vapor interface and so on along the pipe length can be obtained by solving the model. Based on the modeling results, the conclusions below can be drawn: the two-phase pressure drop along the pipe length increases nearly linearly; the average velocity of vapor phase first increases and then decreases, but the variation range is small and far bigger than that of liquid phase; the momentum-transfer shear stress increases as the thickness of the liquid film increases, and can not be ignored compared to the frictional shear stress; the convective heat transfer coefficient at the inner wall of the pipe decreases as the thickness of the liquid film increases, but it is still comparatively bigger when the condensation is almost completed.

     

  • loading
  • [1] Maydanik Y F. Loop heat pipes [J]. Applied Thermal Engineering, 2005, 25: 635-657 [2] Wang Guanghan, Mishkinis D, Nikanpour D. Capillary heat loop technology: space applications and recent Canadian activities[J]. Applied Thermal Engineering, 2008, 28: 284-303 [3] Pastukhov V G, Maydanik Y F, Vershinin C V, et al. Miniature loop heat pipes for electronics cooling[J]. Applied Thermal Engineering, 2003, 23:1125-1135 [4] Pastukhov V G, Maydanik Y F. Low-noise cooling system for PC on the base of loop heat pipes [J]. Applied Thermal Engineering, 2007, 27: 894-901 [5] Kaya T, Hoang T T, Ku J, et al. Mathematical modeling of loop heat pipes . AIAA-99-0477, 1999 [6] Hoang T T, Kaya T. Mathematical modeling of loop heat pipes with two-phase pressure drop . AIAA-99-33875, 1999 [7] Parker M L. Modeling of loop heat pipe with applications to spacecraft thermal control . Pennsylvania: Faculty of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 2000 [8] Chuang P A, Cimbala J M, Conroy C T, et al. Comparison of experiments and 1-D steady-state model of a loop heat pipe Proceedings of IMECE. New Orleans, LA:ASME, 2002:1-8 [9] 徐济鋆.沸腾传热和气液两相流[M].2版.北京: 原子能出版社,2001:100-124 Xu Jijun. Boiling heat transfer and liquid/vapor two-phase flow[M]. 2nd ed. Beijing: Nuclear Power Press, 2001:100-124 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3162) PDF downloads(1000) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return