留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯用于提高材料抗原子氧剥蚀性能

张雯 易敏 沈志刚 张晓静

张雯, 易敏, 沈志刚, 等 . 石墨烯用于提高材料抗原子氧剥蚀性能[J]. 北京航空航天大学学报, 2014, 40(2): 172-176.
引用本文: 张雯, 易敏, 沈志刚, 等 . 石墨烯用于提高材料抗原子氧剥蚀性能[J]. 北京航空航天大学学报, 2014, 40(2): 172-176.
Zhang Wen, Yi Min, Shen Zhigang, et al. Application of graphene on improving atomic oxygen resistance of material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 172-176. (in Chinese)
Citation: Zhang Wen, Yi Min, Shen Zhigang, et al. Application of graphene on improving atomic oxygen resistance of material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 172-176. (in Chinese)

石墨烯用于提高材料抗原子氧剥蚀性能

基金项目: 北京市自然科学基金资助项目(2132025);北京市教委共建项目建设计划资助
详细信息
  • 中图分类号: V258

Application of graphene on improving atomic oxygen resistance of material

  • 摘要: 提出新型二维纳米材料石墨烯在航天器上的应用.首先采用超声空化法制备得到石墨烯,然后将其添加到环氧树脂中,采用共混法制成纳米复合材料.热失重分析显示材料的热稳定性能有所提高.在地面模拟设备中对环氧树脂和纳米复合材料进行了原子氧效应试验,并对试验前后材料的质量损失、表面形貌和表面成分等进行了分析,结果表明纳米复合材料相对于纯环氧树脂,其抗原子氧剥蚀性能有明显提高.

     

  • [1] Silverman E M.Spacecraft environmental effects on spacecraft:LEO materials selection guide[R].NASA CR-4661, 1996
    [2] Legar L, Santosmason B, Visentine J, et al.Review of LEO flight experiments[R].NASA-1987-26173, 1987
    [3] Jana S, Zhong W H.Curing characteristics of an epoxy resin in the presence of ball-milled graphite particles[J].J Mater Sci, 2009, 44:1987-1997
    [4] Young P R, Slemp W S, Whitley K S, et al.LDEF polymeric materials:summary of Langley characterization[R].NASA-95-23899, 1995
    [5] Wang X, Zhao X H, Wang M Z, et al.An experimental study on improving the atomic oxygen resistance of epoxy resin/silica composites[J].Polym Eng Sci, 2007, 47(7):1156-1162
    [6] Song P G, Cao Z H, Cai Y Z, et al.Fabrication of exfoliated graphene-based polypropylene composites with enhanced mechanical and thermal properties[J].Polymer, 2011, 52(18):4001-4010
    [7] Woo R S C, Chen Y H, Zhu H G, et al.Environmental degradation of epoxy-organoclay composites due to UV exposure part I:photo-degradation[J].Compos Sci Technol, 2007, 67(15/16):3448-3456
    [8] Zhu Y W, Murali S, Cai W W, et al.Graphene and graphene oxide:synthesis, properties, and applications[J].Adv Mater, 2010, 22(35):3906-3924
    [9] Zhao X, Zhang Q H, Chen D J.Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites[J].Macromolecules, 2010, 43(5):2357-2363
    [10] Rafiee M A, Rafiee J, Wang Z H, et al.Enhanced mechanical properties of composites at low graphene content[J].ACS Nano, 2009, 3(12):3884-3890
    [11] Bunch J S, Verbridge S S, Alden J S, et al.Impermeable atomic membranes from graphene sheets[J].Nano Lett, 2008, 8(8):2458-2462
    [12] Leenaerts O, Partoens B, Peeters F M.Graphene:a perfect nanoballoon[J].Appl Phys Lett, 2008, 93(19):193107-1-193107-3
    [13] Vinogradov N A, Schulte K, Ng M L, et al.Impact of atomic oxygen on the structure of graphene formed on Ir (111) and Pt (111)[J].J Phys Chem C, 2011, 115(19):9568-9577
    [14] Yi M, Shen Z G, Ma S L, et al.A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite[J].J Nanopart Res, 2012, 14:1003
    [15] Lotya M, Hemandez Y, King P J, et al.Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J].J Am Chem Soc, 2009, 131(10):3611-3620
    [16] Serena Saw W P, Mariatti M.Properties of synthetic diamond and graphene nanoplatelet-filled epoxy thin film composites for electronic applications[J].J Mater Sci-Mater Electron, 2012, 23(4):817-824
    [17] Kuilla T, Bhadra S, Yao D H, et al.Recent advances in graphene based polymer composites[J].Prog Polym Sci, 2010, 35(11): 1350-1375
    [18] Cong H L, Radosz M, Towler B F, et al.Polymer-inorganic nanocomposite memberanes for gas separation[J].Sep Purif Technol, 2007, 55(3):281-291
    [19] Zaman I, Phan T T, Kuan H, et al.Epoxy/graphene platelets nanocomposites with two levels of interface strength[J].Polymer, 2001, 52(7):1603-1611
    [20] 沈志刚, 赵小虎, 陈军, 等.灯丝放电磁场约束型原子氧效应地面模拟试验设备[J].航空学报, 2000, 21(5):425-430 Shen Zhigang, Zhao Xiaohu, Chen Jun, et al.Ground-based atomic oxygen effects simulation facility with the filament discharge and bound of magnetic field[J].Acta Aeronautica et Astronautica Sinica, 2000, 21(5):425-430 (in Chinese)
    [21] Zhao X H, Shen Z G, Xing Y S, et al.Experimental study of vacuum ultraviolet radiation effects and its synergistic effects with atomic oxygen on a spacecraft material-polytetrafluoroethylene[J].Chinese Journal of Aeronautics, 2004, 17(3):181-196
    [22] Singh V, Joung D, Zhai L, et al.Graphene based materials:past, present and future[J].Prog Mater Sci, 2011, 56(8): 1178- 1271
    [23] Choudalakis G, Gotsis A D.Permeability of polymer/clay composites:a review[J].Eur Polym J, 2009, 45(4):967-984
    [24] Sun T, Fabris S, Baroni S.Surface precursors and reaction mechanisms for the thermal reduction of graphene basal surfaces oxidized by atomic oxygen[J].J Phys Chem, 2011, 115(11): 4730-4737
    [25] Topsakal M, Sahin H, Ciraci S.Graphene coatings:an efficient protection from oxidation[J].Phys Rev B:Condens Matter, 2012, 85(15):155445-1-155445-7
  • 加载中
计量
  • 文章访问数:  1448
  • HTML全文浏览量:  183
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-12
  • 网络出版日期:  2014-02-20

目录

    /

    返回文章
    返回
    常见问答