Modeling air combat situation assessment based on combat area division
-
摘要: 编队超视距空战(BVR,Beyond Visual Range)已成为现代空战的主要模式.在空战优势区域与劣势区域判断的基础上对整个空域进行划分,并给出4种特定空域态势.从空中态势和编队作战能力两方面对空战态势进行分析.使用主成分分析法选取输入变量分析编队作战能力,降低评估过程中收集数据的复杂度.应用遗传神经网络对影响BVR各因素进行效能评估,将遗传算法(GA,Genetic Algorithms)与多层前馈(BP,Back Propagation)网络结合,利用GA的全局搜索优化BP网络的结构参数,有效克服BP算法的局部收敛等问题.结果表明:该模型能在综合分析空战各指标后给出红蓝双发的态势评估指标,该模型可有效减少评估中的人为因素,使评估结果更为客观可信.Abstract: The beyond visual range(BVR) air combat has become one of the most important air modes of modern air combat. The whole airspace division was made base on advantages and disadvantages of regional area. Four specific airspace situations were put forward. A new model was set up combined situation assessment model and formation combat capacity model. Using principal component analysis(PCA)to select input variables of formation combat capacity model, which can reduce the complexity of collecting data. Combined neural network was used for effectiveness evaluation of BVR. Combine genetic algorithms(GA)with back propagation(BP) neural network,using GA's global to search optimized BP network structure parameters,overcome the local convergence and other issues of BP algorithm effectively. The result shows that the model can limit the artificial factors, making the solution more objective and creditable.
-
[1] Sivazlian B D.Aircraft sortie effectiveness model[R].AD-A211594,1989 [2] 康崇禄.国防系统分析方法[M].北京:国防工业出版社,2003:442-467 Kang Chonglu.Method ofnational system analysis[M].Beijing: National Defence Industry Press,2003:442-467(in Chinese) [3] 曲东才.超视距空空导弹与超视距空战[J].中国航天,1999(8):23-27 Qu Dongcai.BVR air-to-air missile and BVR air combat[J].Aerospace China,1999(8):23-27(in Chinese) [4] Tom Ring.US airborne command and control system [J].World Air Power,1999(36):40-57 [5] Paddon H G.Maneuvering target simulation for testing the terminal guidance of air-to-air missiles .ADA039757/OSL,1977 [6] Austin F,Lewis M.Automated maneuvering decision for air-to-air combat [R].AIAA-87-2393,1987 [7] Hague D S.Multiple-tactical aircraft combat performance evaluation system [R].AIAA-80-0189,1980 [8] Coleman N,Papanagopoulos G.Advanced mine-to-target assignment algorithms and simulation [R].AIAA-99-3993,1999 [9] Geng Yanluo,Jiang Changsheng,Li Weihao.Multi-fighter coord inated multi-target attack system [J].Transact ions of Nanjing University of Aeronautics and Astronautics,2004,21(1):18-23 [10] 李林森,佟明安.协同多目标攻击空战决策及其神经网络实现[J].航空学报,1999,20(4):309-312 Li Linsen,Tong Ming an.Air combat decision of cooperative multi-target attack and its neural net realization[J].Acta Aeronautica et Astronautica Sinica,1999,20(4):309-312(in Chinese) [11] Phua P K H,Zhu X T,Koh C H.Forecasting stock index increments using neural networks with trust region methods[C]//Proceedings of the International Joint Conference on Neural Networks.Singapore:IEEE,2003:260-265 [12] 范睿,李国斌,景韶光.基于实数编码遗传算法的混合神经网络算法[J].计算机仿真,2006,23(1):161-164 Fan Rui,Li Guobin,Jing Shaoguang.A method of mixed neural network based on real-coded genetic algorithm[J].Computer Simulation,2006,23(1):161-164(in Chinese) [13] 张最良,李长生,赵文志,等.军事运筹学[M].北京:军事科学出版社,1993:109-123 Zhang Zuiliang,Li Changsheng,Zhao Wenzhi,et al.Military operational research[M].Beijing:Military Science Press,1993:109-123(in Chinese) [14] 朱宝鎏,朱荣昌,熊笑非.作战飞机效能评估[M].北京:航空工业出版社,1993:64-91 Zhu Baoliu,Zhu Rongchang,Xiong Xiaofei.Military aircraft combat effectiveness assessment [M].Beijing:Aeronautics Industry Press,1993:64-91(in Chinese) [15] 姬春煦,张骏.基于主成分分析的股票指数预测研究[J].计算机工程与科学,2006,28(8):122-124 Ji Chunxu,Zhang Jun.Stock forecasting based on principal component analysis[J].Computer Engineering and Science,2006,28(8):122-124(in Chinese) [16] 姜长生,丁全心,王建刚,等.多机协同空战中的威胁评估与目标分配[J].火力与指挥控制,2008,33(11):8-13 Jiang Changsheng,Ding Quanxin,Wang Jiangang,et al.Research on threat assessment and target distribution for multi-aircraft cooperative air combat[J].Fire Control and Command Control,2008,33(11):8-13(in Chinese)
点击查看大图
计量
- 文章访问数: 1685
- HTML全文浏览量: 203
- PDF下载量: 681
- 被引次数: 0