Rate-dependent modeling and tracking control of giant magnetostrictive actuators
-
摘要: 利用Hammerstein模型对超磁致伸缩作动器(GMA, Giant Magnetostrictive Actuators)进行建模, 分别以改进的Prandtl-Ishlinskii(MPI, Modified Prandtl-Ishlinskii)模型和外因输入自回归模型(ARX, Autoregressive model with exogenous input)代表Hammerstein模型中的静态非线性部分和线性动态部分,并给出了模型的辨识方法.此模型能在1~100 Hz频率范围内较好地描述GMA的率相关迟滞非线性特性.提出了前馈逆补偿和比例-微分-积分(PID, Proportional-Integral-Derivative)反馈相结合的复合控制策略.实时跟踪幅值为16 μm的单一频率和复合频率正弦参考输入信号, 均方根误差小于1 μm, 相对误差小于10%, 证明了控制策略的有效性.
-
关键词:
- 超磁致伸缩作动器 /
- 率相关迟滞非线性 /
- Hammerstein模型 /
- MPI模型 /
- 跟踪控制
Abstract: A Hammerstein model was proposed to model giant magnetostrictive actuators (GMA). A modified Prandtl-Ishlinskii(MPI) model and an autoregressive model with exogenous input (ARX) were used to represent the static nonlinear part and the linear dynamic part of the Hammerstein model respectively. Model identification method was also given. The proposed model can describe the rate-dependent hysteresis of GMA from 1 Hz to 100 Hz well. A compound controller containing inverse compensator and proportional-integral-derivative (PID) feedback was designed for tracking control. Real time trajectory tracking of single frequency and composite frequency sinusoidal reference inputs with the amplitude of 16 μm was conducted. The root-mean-square error was less than 1μm and the relative error was less than 10%, which verify the effectiveness of the control strategy. -
[1] Jiles D C,Atherton D L.Theory of ferromagnetic hysteresis [J].Journal of Magnetism and Materials,1986,61:48-60 [2] Brokate M,Sprekels J.Hysteresis and phase transitions [M].Berlin:Springer Verlag,1996 [3] Mayergoyz I D.Dynamic preisach model of hysteresis [J].IEEE Trans Magn,1988,24(6):2925-2927 [4] Webb G V,Lagoudas D C,Kurdila A J.Hysteresis modeling of SMA actuators for control application [J].Journal of Intelligent Material Systems and Structures,1998,9(6):432-448 [5] Kuhnen Klaus.Modeling,identification and compensation of complex hysteresis nonlinearities,a modified Prandtl-Ishlinskii approach [J].European Journal of Control,2003,9(4):407-418 [6] Venkataraman R.Modeling and adaptive control of magnetostrictive actuator[D].College Park:Center for Dynamics and Control of Smart Structures,University of Maryland,1999 [7] Slaughter J C,Dapino M J,Smith R C,et al.Modeling of a Terfenol-D ultrasonic transducer[C]//Proceedings of Smart Structures and Materials 2000:Smart Structures and Integrated Systems.Newport Beach,USA:SPIE,2000:366-377 [8] Tan X B,Baras J S.Modeling and control of hysteresis in magnetostrictive actuators [J].Automatica,2004,40:1469-1480 [9] Janaideh M Al,Su C Y,Rakheja S.Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators [J].Smart Mater Struct,2008,17(3):035026.1-035026.11 [10] Dong R,Tan Y,Chen H,et al.A neural network based model for rate-dependent hysteresis for piezoceramic actuators [J].Sensor Actuat A—Phys,2008,143(3):370-376 [11] Deng L,Tan Y.Diagonal recurrent neural network with modified backlash operators for modeling of rate-dependent hysteresis in piezoelectric actuators [J].Sensor Actuat A—Phys,2008, 148(1): 259-270 [12] Lei W,Mao J Q,Ma Y H.A new modeling method for nonlinear rate-dependent hysteresis system based on LS-SVM[C]// Proceedings of IEEE International Conference on Control,Automation,Robotics and Vision.Hanoi,Vietnam:IEEE,2008:1442-1446 [13] Mao J Q,Ding H S.Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis [J].Science in China Press,2009,52(4):547-722 [14] Iyer R V,Tan X B,Krishnaprasad P S.Approximate inversion of the preisach hysteresis operator with application to control of smart actuators [J].IEEE Transactions on Automatic Control,2005,50(6):798-810 [15] Cavallo A,Natale C,Pirozzi S,et al.Effects of hysteresis compensation in feedback control systems [J].IEEE Transactions on Magnetics,2003,39(3):1389-1392 [16] Tao G,Kokotovic P V.Adaptive control of systems with actuator and sensor nonlinearities [M].New York,USA:John Wiley & Sons,1996 [17] Webb G V,Kurdila A J.Identification and adaptive control for a class of hysteresis operators .AIAA 97-1208,1997 [18] Zhang Z,Chen Q W,Mao J Q.A generalized stress-dependent Prandtl-Ishlinskii model and its adaptive inverse compensation with model reference for GMA[C]//Proceedings of 8th Asian Control Conference.Kaohsiung,Taiwan:IEEE,2011:535-540 [19] Liaw H C,Shirinzadeh B,Smith J.Enhanced sliding mode motion tracking control of piezoelectric actuator [J].Sensors and Actuators A,2007,138:194-202 [20] Nealis J M,Smith R C.Model-based robust control design for magnetostrictive transducers operating in hysteretic and nonlinear regimes [J].IEEE Transactions on Control Systems Technology,2007,15(1):22-39 [21] Tan X B,Baras J S.A robust control framework for smart actuators[C]//Proceedings of the American Control Conference.Denver,Colorado,USA:IEEE,2003:4645-4650 [22] Giri F,Bai E W.Block-oriented nonlinear systems identification [M].Berlin:Springer-Verlag,2010:4-6 [23] Zhu Y C.Multivariable system identification for process control [M].Netherlands:Elsevier Science Ltd,2001:73-82
点击查看大图
计量
- 文章访问数: 1375
- HTML全文浏览量: 181
- PDF下载量: 645
- 被引次数: 0