Indirect method for trajectory optimization of hypersonic vehicle with static parameters
-
摘要: 提出了一种求解带静态参数最优控制问题的间接算法,解决了带静态参数的高超声速飞行器轨迹优化问题.将最优控制中的静态参数分为3类:终端时间、边界点状态变量和设计变量.通过转换公式,可以将终端时间变为优化过程中的一个设计变量,终端时间可变问题转换为终端时间固定问题.边界点状态变量自由,可以根据极大值原理推导获得相应的协态边界条件.设计变量可以看作是导数为零的状态变量,从而获得新的状态方程和协态方程,以及初始和终端对应设计变量的协态值.经过变化,带静态参数的最优控制问题构成一个标准两点边值问题.最后以乘波体为研究对象,将气动外形参数作为优化静态参数,完成了外形/轨迹一体化优化设计,获得了满足全局最大航程要求的最优气动外形.Abstract: An indirect method for optimal control problems with static parameters was developed. Trajectory optimization with static parameters for hypersonic vehicle was solved using this method. Static parameters were divided into three kinds, final time, boundary state variables and design variables. The final time can be transferred to a design variable, and convert the free final time problem to a fixed final time problem. The boundary conditions of costates corresponding to the free boundary states can be derived using the maximum value principle. A design variable can be looked as a state variable whose derivative is zero. And new state dynamics, costate dynamics and boundary conditions can be obtained. After that, the optimal control problem with static parameters was converted to a standard two-point boundary value problem (TPBVP). In the end, the wave-rider was taken for example, its aero shape parameters were looked as static parameters. After the aero shape and trajectory integrated optimization, the optimal aero shape was obtained with the global maximum range.
-
[1] Nan Ying, Chen Shilun, Yan Hui.A common numerical calculation method of optimizing the trajectories of space vehicles[J].Flight Dynamics, 1996, 9:20-26[2] Benson D. A Gauss pseudospectral transcription for optimal control[D].Boston:Massachusetts Institute of Technology, 2004[3] Huntington G T. Advancement and analysis of a Gauss pseudosp-ectral transcription for optimal control problems[D].Boston:Massachusetts Institute of Technology, 2007[4] Yan Hui, Chen Shilu, Nan Ying.Static and dynamic hybrid optimization[J].AIAA, 1997:231-233[5] Hull D G. Optimal control theory for applications[M].Berlin:Springer-Verlag, 2003[6] Zhu Xiaolin. Numerical analysis[M].Heifei:University of Science and Technology of China Press, 2010:255-272[7] Shampine L F, Reichelt M W, Kierzenka J.Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c[EB/OL].[8] Nonweiler T R. Aerodynamic problems of manned space vehicles[J].Journal of the Royal Aeronautical Society, 1959, 63(2):521-528[9] 赵志. 乘波构型前体的设计与性能计算[D].西安:西北工业大学, 2006 Zhao Zhi.Design and performance calculation of waverider forebody[D].Xi'an:Northwestern Polytechnical University, 2006(in Chinese)[10] 王烁, 李萍, 陈万春.锥导乘波体气动代理建模方法研究[J].飞行力学, 2012(1):43-47 Wang Shuo, Li Ping, Chen Wanchun.Reserch on the surrogate of model aerodynamic performance of cone derived waverider[J].Flight Dynamics, 2012(1):43-47(in Chinese)[11] 高建力.高超声速飞行器气动特性估算与分析[D].西安:西北工业大学, 2007 Gao Jianli.Estimating and analyzing of aerodynamic of hypersonic vehicle[D].Xi'an:Northwestern Polytechnical University, 2007(in Chinese)[12] 王振国, 陈小前, 罗文彩, 等.飞行器多学科设计优化理论与应用研究[M].北京:国防工业出版社, 2006 Wang Zhenguo, Chen Xiaoqian, Luo Wencai.Research on the theory and application of multidisciplinary design optimization of flight vehicles[M].Beijing:National Defense Industry Press, 2006(in Chinese) 期刊类型引用(8)
1. 李彬,雷宏杰,岳亚洲,周原,田哲铭,乔金良. 基于GPS-惯性数据的激光大气数据系统标定方法. 中国惯性技术学报. 2024(03): 308-313 . 百度学术
2. 黄黎平,唐诗,刘兴涛. 一种适用于激光测速系统的自适应CFAR算法. 电子制作. 2024(06): 57-59+40 . 百度学术
3. 熊亮,张睿,龙彦志. 飞行器飞行大气数据传感技术发展现状与展望. 航空学报. 2024(05): 210-225 . 百度学术
4. 刘永华,徐国华,史勇杰,杜振宇,张慧鑫,胡志远. 强旋翼尾迹涡干扰对直升机空速测量的影响. 航空学报. 2024(14): 206-220+1+15 . 百度学术
5. 高强. 激光空速传感器试验技术研究. 中国新技术新产品. 2024(23): 26-29 . 百度学术
6. 岳亚洲,李彬,雷宏杰. 激光大气运动参数测量技术研究进展及展望(特邀). 光子学报. 2022(04): 9-23 . 百度学术
7. 李彬,雷宏杰. 机载光学大气数据系统数据反演精度分析. 红外与激光工程. 2021(08): 215-220 . 百度学术
8. 毛娃,安娜,陈焰,毛剑琳. 舰载高精度发控测试系统的设计. 自动化仪表. 2021(11): 8-11 . 百度学术
其他类型引用(3)
-

计量
- 文章访问数: 1458
- HTML全文浏览量: 48
- PDF下载量: 814
- 被引次数: 11