留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高精度多维限制器的性能分析

孙迪 阎超 于剑 屈峰 华俊

孙迪, 阎超, 于剑, 等 . 高精度多维限制器的性能分析[J]. 北京航空航天大学学报, 2015, 41(3): 437-442. doi: 10.13700/j.bh.1001-5965.2014.0185
引用本文: 孙迪, 阎超, 于剑, 等 . 高精度多维限制器的性能分析[J]. 北京航空航天大学学报, 2015, 41(3): 437-442. doi: 10.13700/j.bh.1001-5965.2014.0185
SUN Di, YAN Chao, YU Jian, et al. Performance analysis of high accuracy multi-dimensional limiting process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 437-442. doi: 10.13700/j.bh.1001-5965.2014.0185(in Chinese)
Citation: SUN Di, YAN Chao, YU Jian, et al. Performance analysis of high accuracy multi-dimensional limiting process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 437-442. doi: 10.13700/j.bh.1001-5965.2014.0185(in Chinese)

高精度多维限制器的性能分析

doi: 10.13700/j.bh.1001-5965.2014.0185
基金项目: 国家973计划资助项目(2009CB724104)
详细信息
    作者简介:

    孙迪(1991—),女,安徽巢湖人,博士生,sundi@ase.buaa.edu.cn

    通讯作者:

    阎超(1963—),男,江苏徐州人,教授,yanchao@buaa.edu.cn,主要研究方向为计算空气动力学.

  • 中图分类号: V123.4

Performance analysis of high accuracy multi-dimensional limiting process

  • 摘要: 目前常用的限制器大都是基于一维构造,无法在多维情况下保证物理量的单调特性进而导致非物理振荡.为弥补传统方法的这一构造缺陷,多维限制器(MLP)通过多维修正使单元通量值介于周围相邻单元通量的最大值和最小值之间,在保证求解精度的情况下有效避免了多维振荡.基于一维激波管、无黏涡及激波边界层干扰等算例,对高精度MLP的特性进行了研究分析.结果显示:3阶MLP在连续和间断区域均可有效地避免多维振荡;与高阶WENO(Weighted Essentially Non-Oscillatory)方法相比,3阶MLP不仅算法简单、易于实现,还可显著提高求解的精度、保单调性及收敛性.因此可用于工程及科学研究的复杂流动,具有较好的应用前景.

     

  • [1] Zhang H X. On problems to develop physical analysis in CFD[C]//Proceedings of the Fourth Asian Computational Fluid Dynamics Conference.Chengdu:IEEE,2000:3-19.
    [2] 杨建龙,刘猛. 限制器对高超声速表面热流数值模拟的影响[J].北京航空航天大学学报,2014,40(3):417-421. Yang J L,Liu M.Influence of limiters on numerical simulation of heating distributions for hypersonic bodies[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(3):417-421(in Chinese).
    [3] Shu C W, Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].Journal of Computational Physics,1988,77(2):439-471.
    [4] Roe P L. Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics[J].Journal of Computational Physics,1986,63(2):458-476.
    [5] Lacor C, Hirsch C.Genuinely upwind algorithms for multidimensional Euler equations[J].AIAA Journal,1992,30(1):56-63.
    [6] Deconinck H, Paillere H,Struijs R,et al.Multidimensional upwind schemes based on fuctuation-splitting for systems of conservation laws[J].Computational Mechanics,1993,11(5-6):323-340.
    [7] 屈峰,阎超, 于剑,等,高精度激波捕捉格式的性能分析[J].北京航空航天大学学报,2014,40(8):1085-1089. Qu F,Yan C,Yu J,et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(8):1085-1089(in Chinese).
    [8] Kim K H, Kim C.Accurate,efficient and monotonic numerical methods for multi-dimensional compressible flows,Part II:multi-dimensional limiting process[J].Journal of Computational Physics,2005,208(2):570-615.
    [9] Noh S J, Lee K R,Park J H O,et al.An accurate and efficient calculation of high enthalpy flows using a high order new limiting process[J].Journal of the Korean Society for Industrial and Applied Mathematics,2011,15(1):67-82.
    [10] Kang H M, Kim K H,Lee D H.A new approach of a limiting process for multi-dimensional flows[J].Journal of Computational Physics,2010,229(19):7102-7128.
    [11] Harten A. High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics,1983,49(3):357-393.
    [12] Roe P L. Approximate Riemann solvers,parameter vectors and difference schemes[J]. Journal of Computational Physics,1981,43(2):357-372.
    [13] 阎超. 计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006:15-25. Yan C.Computational fluid dynamic's methods and applications[M].Beijing:Beihang University Press,2006:15-25(in Chinese).
    [14] van Leer B. Toward the ultimate conservative difference scheme[J].Journal of Computational Physics,1997,135(2):229-248.
    [15] Hirsch C. Numerical computation of international and external flows:Volume 2[M].Hoboken,NJ:John Wiley& Sons Publish,1990:121-156.
    [16] Park J S, Chang T K,Kim C.Higher-order multi-dimensional limiting strategy for correction procedure via reconstruction[C]//52nd Aerospace Sciences Meeting.Maryland:AIAA,2014:2014-0772.
    [17] Knight D. RTO WG 10-Test cases for CFD validation of hypersonic flight,AIAA-2002-0433[R].Reston:AIAA,2002.
  • 加载中
计量
  • 文章访问数:  1042
  • HTML全文浏览量:  55
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-08
  • 网络出版日期:  2015-03-20

目录

    /

    返回文章
    返回
    常见问答