Analysis on vibration transmission characteristics of box-like power structure
-
摘要: 针对箱式动力结构大型化、柔性化的特点,结合有限元法,以二级减速箱为对象研究不同激励条件下齿轮轴-轴承-箱体的振动传递特性.箱体采用Craig-Bampton动力缩减法缩聚到轴承孔中心处作为柔性子结构,啮合传递误差和输入轴扭矩波动分别作为激励源,考虑齿轮的时变啮合刚度、啮合错位、齿侧间隙、轴向重合度等非线性因素,计及轴段、齿轮的重力效应,基于轴段节点的思想分析了箱体缩聚节点处及轴承内圈处的动态加速度响应.最后基于Block Lanzos法提取箱体的固有特征频率.数值分析结果表明,输出轴轴承在动响应传递过程中没有起到衰减作用,应该替换以防影响整个系统的性能;减速箱的箱体设计保守,可以根据箱体缩聚节点处的动态响应为激励条件进行优化.
-
关键词:
- Craig-Bampton缩减法 /
- 啮合时变刚度 /
- 啮合传递误差 /
- 轴段节点 /
- Block Lanzos法
Abstract: Box-like dynamic structures are proceeding at the direction of maximization and flexibility. Vibration transmission characteristics of geared shaft-bearing-housing were studied by finite element method under different excitation conditions for two-stage reducer. Gearbox was used as a flexible substructure reduced to the center of bearing hole by Craig-Bampton dynamic reduction technique. When mesh transmission error and torque fluctuations of input shaft served as excitation source respectively, meanwhile nonlinear factors such as time-varying meshing stiffness, meshing misalignment, gear tooth backlash, axial contact ratio, and the gravity effect of shafts and gears were taken into consideration, dynamic acceleration response at gearbox reduction nodes and bearing inner ring were analyzed based on the thought of shaft section node. Finally, the natural frequencies of gearbox were extracted based on Block Lanzos method. Numerical analysis results show that the bearings of output shaft do not play an attenuation effect in the process of dynamic response transmission, and should be replaced to prevent the influence on the performance of whole system. Gearbox is conservatively designed that needs to be optimized according to the dynamic response of gearbox reduction nodes. -
[1] Mucchi E, Vecchio A.Acoustical signature analysis of a helicopter cabin in steady-state and run up operational conditions[J].Measurement,2010,43(2):283-293. [2] 顾松年,徐斌, 荣见华,等.结构动力学设计优化方法的新进展[J].机械强度,2005,27(2):156-162. Gu S N,Xu B,Rong J H,et al.Recent progresses on structural dynamic design methods[J].Journal of Mechanical Strength,2005,27(2):156-162(in Chinese). [3] Yamamoto Y, Eda H,Shimizu J.Application of giant magnetostrictive materials to positioning actuators[C]//Advanced Intelligent Mechatronics Proceedings.Atlanta:IEEE,1999:215-220. [4] 柳萍,毛剑琴, 张伟,等.基于Hammerstein-like模型的超磁致伸缩作动器建模与控制[J].北京航空航天大学学报,2013,39(7):917-921. Liu P,Mao J Q,Zhang W,et al.Modeling and control of giant magnetostrictive actuators based on Hammerstein-like model[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(7):917-921(in Chinese). [5] 郭咏新,毛剑琴. 超磁致伸缩作动器的率相关建模与跟踪控制[J].北京航空航天大学学报,2013,39(10):1360-1365. Guo Y X,Mao J Q.Rate-dependent modeling and tracking control of giant magnetostrictive actuators[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(10):1360-1365(in Chinese). [6] 张旭辉,刘永光, 付永领.一种新颖超磁致伸缩作动器的隔振模型[J].北京航空航天大学学报,2007,33(11):1317-1320. Zhang X H,Liu Y G,Fu Y L.Novel model of active vibration isolation based on giant magnetostrictive actuator[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(11): 1317-1320(in Chinese). [7] 李超,李琳. 磁致伸缩材料作动器用于主动振动控制的实验研究[J].航空动力学报,2003,18(1):134-139. Li C,Li L.Active vibration control using magnetostrictive material[J].Journal of Aerospace Power,2003,18(1):134-139(in Chinese). [8] 余光伟. 多平行轴齿轮-轴承-转子系统耦合振动的有限元分析[D].上海:上海大学,1999. Yu G W.Analysis of coupling vibration of multi-stage gear-bearing-rotor systems with finite element method[D].Shanghai:Shanghai University,1999(in Chinese). [9] Parker R G, Guo Y,Eritenel T,et al.Vibration propagation of gear dynamics in a gear-bearing-housing system using mathematical modeling and finite element analysis,NASA/CR-2012-217664[R].Cleveland:NASA,2012. [10] Li R F, Yang C Y,Lin T J.Finite element simulation of the dynamical behavior of a speed-increase gearbox[J].Journal of Materials Processing Technology,2004,150(1):170-174. [11] Rook T E. Mobility analysis of structure-borne noise power flow through bearing in gearbox-like structures[J].Noise Control Engineering Journal,1996,44(2):69-77. [12] 吴文光. 人字齿轮传动系统的建模及其动力学特性的有限元分析研究[D].南京:南京航空航天大学,2010. Wu W G.Parametric modeling of herringbone gear drive system and finite element analysis of its dynamic characteristics[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010(in Chinese). [13] Tordion G V, Gauvin R.Dynamic stability of a two-stage gear train under the influence of variable meshing stiffness[J].ASME Journal of Engineering for Industry,1977,99(3):785-791. [14] 秦大同,杨军, 周志刚,等.变载荷激励下风电行星齿轮系统动力学特性[J].中国机械工程,2013,24(3):295-300. Qin D T,Yang J,Zhou Z G,et al.Dynamics characteristic of planetary gear system of wind turbines under varying load[J].China Mechanical Engineering,2013,24(3):295-300(in Chinese). [15] 钟一谔,何衍宗, 王正,等.转子动力学[M].北京:清华大学出版社,1987:143-174. Zhong Y E,He Y Z,Wang Z,et al.Rotor dynamics[M].Beijing:Tsinghua University Press,1987:143-174(in Chinese). [16] Craig R R, Bampton M C C.Coupling of substructures for dynamics analyses[J].AIAA Journal,1968,6(7):1313-1319. [17] 唐增宝,钟毅芳, 戴玉堂.斜齿圆柱齿轮传动的静态啮合刚度和动态啮合刚度[J].机械设计,1993,10(6):10-13. Tang Z B,Zhong Y F,Dai Y T.Static meshing stiffness and dynamic meshing stiffness of helical cylindrical gear drive[J].Journal of Machine Design,1993,10(6):10-13(in Chinese). [18] 彭国民,余波, 马小英.动力总成NVH分析中齿轮啮合特性研究[J].振动工程学报,2010,23(6):681-686. Peng G M,Yu B,Ma X Y.Gear meshing characteristics of powertrain NVH analysis[J].Journal of Vibration Engineering,2010,23(6):681-686(in Chinese). [19] Kahraman A, Singh R.Non-linear dynamics of a spur gear pair[J].Journal of Sound and Vibration,1990,142(1):49-75. [20] Kahraman A. Effect of axial vibrations on the dynamics of a helical gear pair[J].Journal of Vibration and Acoustics,1993,115(1): 33-39. [21] Ognjanovi ć M, Kosti ć S Ć .Gear unit housing effect on the noise generation caused by gear teeth impacts[J].Journal of Mechanical Engineering,2012,58(5):327-337.
点击查看大图
计量
- 文章访问数: 1242
- HTML全文浏览量: 72
- PDF下载量: 476
- 被引次数: 0