留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于几何方法的洲际航空编队飞行路径规划

徐肖豪 孟令航 赵嶷飞

徐肖豪, 孟令航, 赵嶷飞等 . 基于几何方法的洲际航空编队飞行路径规划[J]. 北京航空航天大学学报, 2015, 41(7): 1155-1164. doi: 10.13700/j.bh.1001-5965.2014.0515
引用本文: 徐肖豪, 孟令航, 赵嶷飞等 . 基于几何方法的洲际航空编队飞行路径规划[J]. 北京航空航天大学学报, 2015, 41(7): 1155-1164. doi: 10.13700/j.bh.1001-5965.2014.0515
XU Xiaohao, MENG Linghang, ZHAO Yifeiet al. Geometric approach for intercontinental formation flight path planning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1155-1164. doi: 10.13700/j.bh.1001-5965.2014.0515(in Chinese)
Citation: XU Xiaohao, MENG Linghang, ZHAO Yifeiet al. Geometric approach for intercontinental formation flight path planning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1155-1164. doi: 10.13700/j.bh.1001-5965.2014.0515(in Chinese)

基于几何方法的洲际航空编队飞行路径规划

doi: 10.13700/j.bh.1001-5965.2014.0515
基金项目: 国家自然科学基金(61039001); 国家科技支撑计划(2011BAH24B10)
详细信息
    作者简介:

    徐肖豪(1949—),男,浙江金华人,教授,xuxhao2008@sina.com

    通讯作者:

    孟令航(1977—),男,河南桐柏人,博士研究生,讲师,mlhmenglinghang@163.com,主要研究方向为空中交通管理决策与支持.

  • 中图分类号: U8;V19

Geometric approach for intercontinental formation flight path planning

  • 摘要: 针对洲际航空编队飞行路径规划,首先,基于编队飞行空气动力学的研究结论和球面度量特征,建立了编队飞行路径规划的基本模型;其次,基于编队路径的拓扑特征,将编队路径规划问题抽象为球面点集上基于测地线的加权Steiner最小树规划问题(WGSMT),建立了WGSMT的有限几何简化原则;针对避障编队路径规划,证明衔接点的引入仅改变紧邻的Steiner 点的拓扑特征,而不降低规划结果的准确性,以支持OAWGSMT编队路径规划.最后,构造一种基于“构造-修复”思想的编队路径规划方法,通过实际算例验证了算法的有效性.研究形成洲际航空编队路径规划的几何基础,使问题复杂度依赖于航班集规模而非球面离散化网格规模.

     

  • [1] Airport Council International. Global traffic forecast 2006—2025 executive summary, Edition 2007[R].Montreal: Airport Council International, 2007.
    [2] Rojo J J. Future trends in local air quality impacts of aviation[D].Massachusetts: Massachusetts Institute of Technology, 2007.
    [3] Blake W, Multhopp D.Design, performance and modeling considerations for close formation flight, AIAA-1998-4343[R].Reston: AIAA, 1998.
    [4] Dijkers H P A, Van Nunen R, Bos D A, et al.Integrated design of a long-haul commercial aircraft optimized for formation flying, AIAA-2011-6969[R].Reston: AIAA, 2011.
    [5] Nehrbass J G, Frommer J B, Garison L A, et al.Point to point commercial aircraft service design study including formation flight and morphing[C]//AIAA 4th Aviation Technology, Integration and Operations(ATIO)Forum.Reston: AIAA, 2004: 20-22.
    [6] Ning S A. Aircraft drag reduction through extended formation flight[D].Stanford: Stanford University, 2011.
    [7] Ning S A, Flanzer T C, Kroo I M, et al.Aerodynamic performance of extended formation flight[J].Journal of Aircraft, 2011, 48(3): 855-865.
    [8] Ning S A, Kroo I M.Compressibility effects of extended formation flight, AIAA-2011-3812[R].Reston: AIAA, 2011.
    [9] Flanzer T C, Bieniawski S R, Blake W B, et al.Operational analysis for the formation flight for aerodynamic benefit program, AIAA-2014-1460[R].Reston: AIAA, 2014.
    [10] Xue M, Hornby G.An analysis of the potential savings from using formation flight in the NAS, AIAA-2012-4524[R].Reston: AIAA, 2012.
    [11] Ribichini G, Frazzoli E.Efficient coordination of multiple-aircraft systems[C]//Proceedings of IEEE Conference on Decision and Control.Piscataway, NJ: IEEE Press, 2003, 1: 1035-1040.
    [12] Bower G C, Flanzer T C, Kroo I M.Formation geometries and route optimization for commercial formation flight, AIAA-2009-3615[R].Reston: AIAA, 2009.
    [13] Kent T, Richards A.A geometric approach to optimal routing for commercial formation flight, AIAA-2012-4769[R].Reston: AIAA, 2012.
    [14] Kent T E, Richards A G.On optimal routing for commercial formation flight, AIAA-2013-4889[R].Reston: AIAA, 2013.
    [15] Hino T.Real time path planning method of aircraft formations[C]//28th International Congress of the Aeronautical Scicences.Brisbane: ICAS, 2012: 1-5.
    [16] Xu J S, Ning S A, Bower G C, Kroo I M, et al.Aircraft route optimization for formation flight[J].Journal of Aircraft, 2014, 51(2): 490-501.
    [17] Chiles P. ETOPS redefined[J].AeroSafety World, 2007, 2(3): 88-92.
    [18] Courant R, Robbins H.What is mathematics [M].New York: Oxford University Press, 1951.
    [19] Melzak Z A. On the problem of Steiner[J].Canadian Mathematical Bulletin, 1961, 4(2): 143-148.
    [20] Dolan J, Weiss R, Smith J M G.Minimal length tree networks on the unit sphere[J].Annals of Operations Research, 1991, 33(7): 501-535.
    [21] Cockayne E J. On fermat's problems on the surface of a sphere[J].Mathematics Magazine, 1972, 45(4): 216-219.
    [22] Weng J F. Steiner trees on curved surfaces[J].Graphs and Combinatorics, 2001, 17(2): 353-363.
  • 加载中
计量
  • 文章访问数:  953
  • HTML全文浏览量:  23
  • PDF下载量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-20
  • 修回日期:  2014-11-20
  • 网络出版日期:  2015-07-20

目录

    /

    返回文章
    返回
    常见问答