Correction of contrast distortion image based on nonlinear transform of histogram
-
摘要: 在实际成像过程中,因受多种因素影响而导致图像对比度畸变,使其质量下降。为了改善图像质量并增强视觉效果,提出了一种基于非线性直方图变换与参数优化的降质图像对比度畸变校正方法。首先,针对常规直方图均衡方法的局限性,通过人眼视觉感知特性分析,引入图像直方图的先验约束条件,建立了非线性直方图变换模型;进而,从校正效果的最优化角度考虑,运用遗传算法的进化寻优进行校正参数的优化,从而形成了一种高性能的对比度畸变校正算法。一系列在不同场景实拍的对比度严重畸变图像的校正实验结果表明,本文方法校正结果的客观质量评价测算指标和实际视觉效果都有显著提升,和常规校正方法相比具有明显优势。Abstract: In the practical imaging, the image contrast is distorted due to influence of multi-factors, which degrades image quality greatly. A contrast correction method is presented based on nonlinear transform of histogram and parameter optimization in order to improve image quality and enhance the visual effect. Firstly, in view of the limitation of conventional histogram equalization method, a nonlinear transform model of histogram was established based on the prior constraints of image histogram through the analysis of human visual perception characteristics. Then the parameters of transform model are optimized with the evolutionary searching of genetic algorithms to achieve optimal corrective effect so that a high performance contrast distortion correction algorithm emerged. A series of correction experimental results for real images with severe contrast distortion from different scenes demonstrate that the proposed algorithm outperforms the conventional correction methods in both of objective quality assessment and subjective visual effect and is provided with distinct advantages.
-
[1] 谢凤英,赵丹培, 李露,等.数字图像处理及应用[M].北京:电子工业出版社,2014:87. XIE F Y,ZHAO D P,LI L,et al.Digital image processing and application[M].Beijing:Electronic Industry Press,2014:87(in Chinese). [2] 吴炜. 基于学习的图像增强技术[M].西安:西安电子科技大学出版社,2013:25. WU W.Image enhancement technique based on learning[M].Xi'an:Xidian University Press,2013:25(in Chinese). [3] 李乐鹏,孙水发, 夏冲,等.直方图均衡技术综述[J].计算机系统应用,2014,23(3):1-8. LI L P,SUN S F,XIA C,et al.Survey of histogram equalization technology[J].Computer Systems & Applications,2014,23(3):1-8(in Chinese). [4] KIM Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J].IEEE Transactions on Consumer Electronics, 1997,43(1):1-8. [5] WANG Y, CHEN Q,ZHANG B M.Image enhancement based on equal area dualistic sub-image histogram equalization method[J].IEEE Transactions on Consumer Electronics,1999,45(1):68-75. [6] 扈佃海,吕绪良, 文刘强.一种改进的直方图均衡化图像增强方法[J].光电技术应用,2012,27(3):65-68. HU D H,LV X L,WEN L Q.Image enhancement method using improved histogram equalication[J].Electro-Optic Technology Application,2012,27(3):65-68(in Chinese). [7] TURGAY C, TARTI T.Contextual and variational contrast enhancement[J].IEEE Transactions on Image Processing,2011,20(12):3431-3441. [8] LEE C, KIM C S,LEE C W.Contrast enhancement based on layered difference representation of 2D histograms[J].IEEE Transactions on Image Processing,2013,22(12):5372-5384. [9] ARICI T, DIKBAS S,ALTUNBASAK Y.A histogram modification framework and its application for image contrast enhancement[J].IEEE Transactions on Image Processing,2009,18(9):1921-1935. [10] WU X L. A linear programming approach for optimal contrast-tone mapping[J].IEEE Transactions on Image Processing,2011,20(5):1262-1272. [11] 吴成茂. 可调直方图均衡化的正则解释及其改进[J].电子学报,2011,39(6):1278-1284. WU C M.Regularization explanation of adjustable histogram equalization and its improvement[J].Acta Electronica Sinica,2011,39(6):1278-1284(in Chinese). [12] 吴成茂. 直方图均衡化的数学模型研究[J].电子学报,2013,41(3):598-602. WU C M.Studies on mathematical model of histogram equalization[J].Acta Electronica Sinica,2013,41(3):598-602(in Chinese). [13] HASHEMI S, KIANI S,NOROOZI N,et al.An image contrast enhancement method based on genetic algorithm[J].Pattern Recognition Letters,2010,31(13):1816-1824. [14] 康杰红,马苗. 基于改进蛙跳算法的图像对比度增强方法[J].计算机工程与应用,2014,50(11):171-175. KANG J H,MA M.Image contrast enhancement method based on improved shuffled frog leaping algotithm[J].Computer Engineering and Applications,2014,50(11):171-175(in Chinese). [15] 赵仁涛,王友余, 李华德,等.多粒子群优化算法的远红外图像对比度增强[J].计算机仿真,2014,31(1):361-364. ZHAO R T,WANY Y Y,LI H D,et al.Far infrared image contrast enhancement based on multi-particle swarm optimization[J].Computer Simulation,2014,31(1):361-364(in Chinese). [16] DRAGO F, MYSZKOWSKI K,ANNEN T,et al.Adaptive logarithmic mapping for displaying high contrast scenes[J].Computer Graphics Forum,2003,22(3):419-426. [17] 程光权,成礼智, 赵侠.基于几何特征的图像处理与质量评价[M].北京:国防工业出版社,2013:17-27. CHENG G Q,CHENG L Z,ZHAO X.Image processing and quality assessment based on the geometric features[M].Beijing:National Defence Industry Press,2013:17-27(in Chinese). [18] 史峰,王辉,胡斐,等. Matlab智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011:17-20. SHI F,WANG H,HU F,et al.Intelligent algorithm Matlab 30 case analysis[M].Beijing:Beihang University Press,2011:17-20(in Chinese). [19] AGAIAN S S, SILVER B,PANETTA K A.Transform coefficient histogram-based image enhancement algorithms using contrast entropy[J].IEEE Transactions on Image Processing,2007,16(3):741-758. [20] MITTAL A, MOORTHY A K,BOVIK A C.No-reference image quality assessment in the spatial domain[J].IEEE Transactions on Image Processing,2012,21(12):4695-4708. [21] XUE W,MOU X, ZHANG L,et al.Blind image quality assessment using joint statistics of gradient magnitude and laplacian features[J].IEEE Transactions on Image Processing,2014,23(11):4850-4862.
点击查看大图
计量
- 文章访问数: 1143
- HTML全文浏览量: 83
- PDF下载量: 5
- 被引次数: 0