Potential production of microalgae aviation fuel and CO2 emissions reduction in China
-
摘要: 综合考虑中国各地温度变化、水资源和CO2的供给能力等因素,分析了中国适合微拟球藻规模化养殖的地区;根据2013年沿海地区燃煤发电排放CO2量,结合蓬莱地区微拟球藻规模化养殖的实际数据,预测了中国微藻的年产量潜力及在现有技术水平下利用这些微藻原料可制备航空煤油的潜力;并采用全生命周期模型GREET计算了微藻航空煤油相比传统石油基航空煤油在全生命周期内中可减少CO2的排放量。结果表明:目前中国具有每年8894万t的微藻养殖潜力,这些微藻共可制备航空煤油1917万t;与传统航煤相比,制备1 t微藻航空煤油在全生命周期内相比传统航空煤油可降低CO2排放2.28 t。Abstract: Based on the variation of temperature and the available supply of water resource and carbon dioxide, the appropriate location for Nannochloropsis cultivation in China was investigated in this study. The potential of microalgae and microalgae aviation fuel annual yield is also predicted according to carbon dioxide emissions from coal-fired power plant and the data of Nannochloropsis cultivation at Penglaiin 2013. The results of life-cycle analysis model GREET indicate that the microalgae aviation fuel could reduce the carbon dioxide emission compared with the fossil aviation fuel in life cycle assessment. China could produce 88.94 million t microalgae that could be converted to 19.17 million t aviation fuel every year. Compared with the fossil aviation fuel, production of one t of microalgae aviation fuel can reduce 2.28 t of carbon dioxide emissions according to the assessment of the whole life cycle.
-
[1] 唐旭,张宝生,邓红梅,等.基于系统动力学的中国石油产量预测分析[J].系统工程理论与实践,2010,30(2):207-212. TANG X,ZHANG B S,DENG H M,et al.Forecast and analysis of oil production in China based on system dynamics[J].Systems Engineering-Theory & Practice,2010,30(2):207-212(in Chinese). [2] 张彤,张文琴,王渊,等.中国石油供应安全状态分析与风险预警[J].中国石油大学学报(社会科学版),2014,30(2):1-7. ZHANG T,ZHANG W Q,WANG Y,et al.Analysis and warning on Chinese oil supply security[J].Journal of China University of Petroleum (Edition of Social Sciences),2014,30(2):1-7(in Chinese). [3] 罗艳托,朱海龙,程俐,等.中国航空煤油市场现状分析与趋势预测[J].国际石油经济,2009,17(7):15-18. LUO Y T,ZHU H L,CHENG L,et al.Current situation analysis and trend forecast of China's aviation kerosene market[J].International Petroleum Economics Monthly,2009,17(7):15-18(in Chinese). [4] CHISTI Y.Biodiesel from microalgae[J].Biotechnology Advances,2007,25(3):294-306. [5] 胡洪营,李鑫,于茵,等.藻类生物质能源——基本原理、关键技术与发展路线图[M].北京:科学出版社,2011:1-20. HU H Y,LI X,YU Y,et al.National algal biofuels technology roadmap[M].Beijing:Science Press,2011:1-20(in Chinese). [6] 柳亚琴,赵国浩.节能减排约束下中国能源消费结构演变分析[J].经济问题,2015(1):27-33. LIU Y Q,ZHAO G H.The evolution analysis of China's energy consumption structure in the constraints of energy-saving and carbon emissions reduction[J].On Economic Problems,2015(1):27-33(in Chinese). [7] 岳立,张姗娜.能源效率、技术进步与CO2排放相关关系研究-基于1978-2010年时间序列数据分析[J].石家庄学院学报,2015,17(1):48-53. YUE L,ZHANG S N.A correlative study of energy efficiency,technical progress and CO2 emission:Based on analysis of 1978-2010 time series data[J].Journal of Shijiazhuang University,2015,17(1):48-53(in Chinese). [8] 潘克厚,韩吉昌,朱葆华,等.基因工程在提高微藻生产生物柴油能力中的应用前景[J].海洋湖沼通报,2012(2):33-43. PAN K H,HAN J C,ZHU B H,et al.The application of genetic engineering in improving the ability of microalgae for biodiesel production[J].Transactions of Oceanology and Limnology,2012(2):33-43(in Chinese). [9] ZHU B H,SUN F Q,YANG M,et al.Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds[J].Bioresource Technology,2014,174:53-59. [10] 彭建,王仰麟.中国沿海滩涂的研究[J].北京大学学报(自然科学版),2000,36(6):832-839. PENG J,WANG Y L.A study on shoaly land in China[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2000,36(6):832-839(in Chinese). [11] 中国2013年气象数据[EB/OL].北京:中国气象科学数据共享服务网,2014[2015-05-17].http://cdc.nmic.cn/home.do. China meteorological data in 2013[EB/OL].Beijing:China Meteorological Data Sharing Service System,2014[2015-05-17].http://cdc.nmic.cn/home.do (in Chinese). [12] 中国化石能源消耗[EB/OL].北京:中华人民共和国国家统计局,2015[2015-05-17].http://www.stats.gov.cn. Chinese fossil energy consumption[EB/OL].Beijing:National Bureau of Statistics of China,2015[2015-05-17].http://www.stats.gov.cn (in Chinese). [13] CHENG J,YANG Z B,HUANG Y,et al.Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant content[J].Bioresource Technology,2015,190:235-241. [14] BROWN T M,DUAN P G,SAVAGE P E,et al.Hydrothermal liquefaction and gasification of Nannochloropsis sp[J].Energy Fuels,2010,24(6):39-46. [15] DUAN P G,SAVAGE P E.Hydrothermal liquefaction of a microalga with heterogeneous catalysts[J].Industrial & Engineering Chemistry Research,2011,50(1):52-61. [16] TOOR S S,REDDY H,DENG S G,et al.Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions[J].Bioresource Technology,2013,131:413-419. [17] LI H,LIU Z D,ZHANG Y H,et al.Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction[J].Bioresource Technology,2014,154:322-329. [18] BAI X J,DUAN P G,XU Y P,et al.Hydrothermal catalytic processing of pretreated algal oil:A catalyst screening study[J].Fuel,2014,120:141-149. [19] 陶志平,龚冬梅,张翠君,等.3号喷气燃料:GB 6537-2006[S].北京:中国国家标准化管理委员会,2006:1-5. TAO Z P,GONG D M,ZHANG C J,et al.No.3 jet fuel:GB 6537-2006[S].Beijing:China National Standardization Technical Management Committee,2006:1-5(in Chinese).
点击查看大图
计量
- 文章访问数: 1036
- HTML全文浏览量: 150
- PDF下载量: 616
- 被引次数: 0