Highly maneuvering hypervelocity-target tracking algorithm based on ST-SRCKF
-
摘要: 针对超高速强机动目标运动模型难以准确建立且观测数据易出现不良量测而导致滤波发散的问题,提出一种适用于超高速强机动目标的跟踪算法。该算法根据正交性原理推导了一种新的强跟踪平方根容积卡尔曼滤波(ST-SRCKF)结构,并引入多重渐消因子,渐消因子求解方法和作用位置均不同于已有的ST-SRCKF。根据新息的统计学特性,即新息协方差矩阵的迹服从卡方分布,建立了一种改进的CS-Jerk模型,该模型对目标机动的描述更准确,它与改进ST-SRCKF算法的结合实现了对超高速强机动目标的高精度跟踪。仿真结果表明,改进算法对超高速强机动目标的跟踪性能更佳。
-
关键词:
- 强机动目标跟踪 /
- 平方根容积卡尔曼滤波(SRCKF) /
- 强跟踪滤波(STF) /
- 多重渐消因子 /
- CS-Jerk模型
Abstract: The movement model of highly maneuvering hypervelocity-target is difficult to construct accurately, and the existence of bad measurements in tracking process may lead to filtering divergence. In order to deal with these problems, a tracking algorithm applicable to highly maneuvering hypervelocity-target is proposed. This algorithm derives a new strong tracking square-root cubature Kalman filter (ST-SRCKF) structure from the orthogonality principle, and introduces multiple fading factors. The solution and function position of fading factors are both different from original ST-SRCKF. According to the statistical characteristics of innovation that the trace of innovation covariance matrix is in a chi-square distribution, a modified CS-Jerk model is constructed. The model describes target movement more accurately. When the modified CS-Jerk model is combined with the modified ST-SRCKF, highly maneuvering hypervelocity-target is tracked with high precision. Simulation results show that the modified algorithm has better tracking performance for highly maneuvering hypervelocity-target. -
[1] 黄长强,国海峰,丁达理.高超声速滑翔飞行器轨迹优化与制导综述[J].宇航学报,2014,35(4):369-379.HUANG C Q,GUO H F,DING D L.A survey of trajectory optimization and guidance for hypersonic gliding vehicle[J].Journal of Astronautics,2014,35(4):369-379(in Chinese). [2] 唐志共,许晓斌,杨彦广,等.高超声速风洞气动力试验技术进展[J].航空学报,2015,36(1):86-97.TANG Z G,XU X B,YANG Y G,et al.Research progress on hypersonic wind tunnel aerodynamic testing techniques[J].Acta Aeronautics et Astronautics Sinica,2015,36(1):86-97(in Chinese). [3] 张翔宇,王国宏,李俊杰,等.临近空间高超声速滑跃式轨迹目标跟踪技术[J].航空学报,2015,36(6):1983-1994.ZHANG X Y,WANG G H,LI J J,et al.Tracking of hypersonic sliding target in near-space[J].Acta Aeronautics et Astronautics Sinica,2015,36(6):1983-1994(in Chinese). [4] XU B.Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity[J].Nonlinear Dynamics,2015,80(3):1509-1520. [5] XU B,YANG C G,PAN Y P.Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle[J].IEEE Transactions on Neural Networks and Learning Systems,2015,26(10):2563-2575. [6] XU B,WANG D W,SUN F C,et al.Direct neural discrete control of hypersonic flight vehicle[J].Nonlinear Dynamics,2012,70(1):269-278. [7] 周政,刘进忙,谭西江.基于Jerk输入估计的MCS模型及非线性跟踪算法[J].北京航空航天大学学报,2013,39(10):1397-1402.ZHOU Z,LIU J M,TAN X J.MCS model based on Jerk input estimation and nonlinear tracking algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(10):1397-1402(in Chinese). [8] ARASARATNAM I,HAYKIN S.Cubature Kalman filters[J].IEEE Transactions on Automatic Control,2009,54(6):1254-1269. [9] 孙枫,唐李军.Cubature卡尔曼滤波与Unscented卡尔曼滤波估计精度比较[J].控制与决策,2013,28(2):303-308.SUN F,TANG L J.Estimation precision comparison of Cubature Kalman filter and Unscented Kalman filter[J].Control and Decision,2013,28(2):303-308(in Chinese). [10] 郭志,董春云,蔡远利,等.时变转移概率IMM-SRCKF机动目标跟踪算法[J].系统工程与电子技术,2015,37(1):24-30.GUO Z,DONG C Y,CAI Y L,et al.Time-varying transition probability based IMM-SRCKF algorithm for maneuvering target tracking[J].Systems Engineering and Electronics,2015,37(1):24-30(in Chinese). [11] 王小旭,潘泉,黄鹤,等.非线性系统确定采样型滤波算法综述[J].控制与决策,2012,27(6):801-812.WANG X X,PAN Q,HUANG H,et al.Overview of deterministic sampling filtering algorithms for nonlinear system[J].Control and Decision,2012,27(6):801-812(in Chinese). [12] ARASARATNAM I,HAYKIN S,HURD T R.Cubature Kalman filtering for continuous-discrete systems:Theory and simulations[J].IEEE Transactions on Signal Processing,2010,58(10):4977-4993. [13] 董鑫,欧阳高翔,韩威华,等.强跟踪CKF算法及其在非线性系统故障诊断中的应用[J].信息与控制,2014,43(4):451-456.DONG X,OUYANG G X,HAN W H,et al.Strong tracking CKF and its application to fault diagnosis of nonlinear systems[J].Information and Control,2014,43(4):451-456(in Chinese). [14] 徐树生,林孝工,赵大威,等.强跟踪SRCKF及其在船舶动力定位中的应用[J].仪器仪表学报,2013,34(6):67-73.XU S S,LIN X G,ZHAO D W,et al.Strong tracking SRCKF and its application in vessel dynamic positioning[J].Chinese Journal of Scientific Instrument,2013,34(6):67-73(in Chinese). [15] 徐树生,林孝工,李新飞.强跟踪自适应平方根容积卡尔曼滤波算法[J].电子学报,2014,42(12):2394-2400.XU S S,LIN X G,LI X F.Strong tracking adaptive square-root cubature Kalman filter algorithm[J].Acta Electronica Sinica,2014,42(12):2394-2400(in Chinese). [16] MEHROTRA K,MAHAPATRA P R.A Jerk model for tracking highly maneuvering targets[J].IEEE Transactions on Aeropace and Electronics Systems,1997,33(4):1094-1105. [17] QIAO X D,WANG B S,LI T.A motion modle for tracking highly maneuvering targets[J].IEEE Transactions on Aerospace and Electronic Systems,2002,6(3):493-499. [18] QIAN H M,CHEN L,YANG J W.A nonlinear tracking algorithm of maneuvering target tracking based on MEP-Jerk model[C]//2011 International Conference on Transportation,Mechanical,and Electrical Engineering (TMEE).Piscataway,NJ:IEEE Press,2011:1673-1677. [19] 郭泽,缪玲娟,赵洪松.一种改进的强跟踪UKF算法及其在SINS大方位失准角初始对准中的应用[J].航空学报,2014,35(1):203-214.GUO Z,MIAO L J,ZHAO H S.An improved strong tracking UKF algorithm and its application in SINS initial alignment under large azimuth misalignment angles[J].Acta Aeronautics et Astronautics Sinica,2014,35(1):203-214(in Chinese). [20] GADZHIEV C M.Checking multivariate model fit from the generalized wishart statistic variance[J].Measurement Techniques,1993,30(12):103-110. [21] 黄伟平,徐毓,王杰.基于改进"当前"统计模型的非线性机动目标跟踪算法[J].控制理论与应用,2011,28(12):1723-1728.HUANG W P,XU Y,WANG J.A nonlinear maneuver-tracking algorithm based on modified current statistical model[J].Control Theory & Applications,2011,28(12):1723-1728(in Chinese). [22] 杜占龙,李小民.基于多渐消因子强跟踪UKF和约束AR模型的故障估计与预测[J].控制与决策,2014,29(9):1667-1672.DU Z L,LI X M.Fault estimation and prediction based on multiple fading factors strong tracking UKF and constrained AR model[J].Control and Decision,2014,29(9):1667-1672(in Chinese). [23] 何友,修建娟,关欣.雷达数据处理及应用[M].3版.北京:电子工业出版社,2013:10.HE Y,XIU J J,GUAN X.Radar data processing with application[M].3rd ed.Beijing:Electronic Industry Publishing House,2013:10(in Chinese).
点击查看大图
计量
- 文章访问数: 1008
- HTML全文浏览量: 39
- PDF下载量: 850
- 被引次数: 0