Combustion performance and range of coal-based Fischer-Tropsch aviation fuel
-
摘要: 航空替代燃料肩负着能源安全以及环境保护的双重使命。对煤基费托航空燃料的基础燃烧性能及航程进行了实验和理论研究。针对民航客机典型飞行任务,选取装有2台CFM56-7B发动机的B737-800型客机进行全包线飞行的航程评价。研究结果表明,煤基费托航空燃料比石油基航空煤油密度低,但热值高。评价结果表明使用煤基费托燃料的客机航程比使用石油基航空煤油的客机缩短2.1%。同时,虽然煤基费托航空燃料的燃烧边界较石油基航煤略窄,但更易点火且不易积碳。取得的结果对煤基费托航空替代燃料的实际应用具有一定的指导意义。Abstract: Aviation alternative fuels play an important role in energy security and environmental protection. Coal-based Fischer-Tropsch synthetic fuel was chosen to experimentally study its basic combustion performance and evaluate the influence of flight range compared to theretical study. A B737-800 with two CFM56-7B engines was chosen to evaluate flight range in full envelope range in a civil aircraft typical mission. The study results show that the coal-based Fischer-Tropsch synthetic fuel has lower density and higher calorific value than petroleum-based aviation kerosene. The evaluation results show that the coal-based Fischer-Tropsch synthetic fuel's lower density and higher calorific value lead to its range shortened by 2.1%. Although Fischer-Tropsch synthetic fuel's combustion boundary is narrower, it performs better in ignition and coking than petroleum-based kerosene. The results obtained has certain directive significance to the practical application of the Fischer-Tropsch alternative fuel.
-
Key words:
- coal-based /
- Fischer-Tropsch synthesis /
- alternative fuel /
- combustion performance /
- range
-
[1] SCHULZ H.Short history and present trends of Fischer-Tropsch synthesis[J].Applied Catalysis A:General,1999,186(1):3-12. [2] 中国石油化工集团公司.原油和液体石油产品密度实验室测定法(密度计法):GB/T 1884-2000[S].北京:中国标准出版社,2000.Sinopec Group.Crude petroleum and liquid petroleum products-Laboratory determination of density-Hydrometermethod:GB/T 1884-2000[S].Beijing:China Standards Press,2000(in Chinese). [3] 中华人民共和国石油工业部.产品热值测定法:GB/T 384-1981[S].北京:中国标准出版社,1981.Petroleum Industry Ministry of China.Determination of calorific value of petroleum products:GB/T 384-1981[S].Beijing:China Standards Press,1981(in Chinese). [4] ASTM International.Standard test method for vapor pressure of petroleum products (Reid method):ASTM D323-15a[S].West Conshohocken:ASTM,2015. [5] ASTM International.Standard test method for smoke point of kerosene and aviation turbine fuel:ASTM D1322-15e1[S].West Conshohocken:ASTM,2015. [6] 全国危险化学品管理标准化技术委员会.化合物(蒸气和气体)易燃性浓度限值的标准试验方法:GB/T 21844-2008[S].北京:中国标准出版社,2008.National Technical Committee 251 on Dangerous Chemicals Management of Standardization Administration of China.Standard test method for concentration limits of flammability of chemicals (vapors and gases):GB/T 21844-2008[S].Beijing:China Standards Press,2008(in Chinese). [7] LIU G,WANG L,QU H,et al.Artificial neural network approaches on composition-property relationships of jet fuels based on GC-MS[J].Fuel,2007,86(16):2551-2559. [8] 中国石油化工集团公司.3号喷气燃料:GB 6537-2006[S].北京:中国标准出版社,2006.Sinopec Group.No.3 jet fuel:GB 6537-2006[S].Beijing:China Standards Press,2006(in Chinese). [9] 周路庚,王幼慧.MEROX固定床脱臭工艺近况[J].石油炼制,1983(1):62-63.ZHOU L G,WANG Y H.MEROX fixed bed deodorization process[J].Petroleum Refining,1983(1):62-63(in Chinese). [10] MOSES C A,ROETS P N J.Properties,characteristics and combustion performance of Sasol fully synthetic jet fuel[J].Gas Turbines Power,2009,131(4):431-443. [11] 张丽英.合理降低油品芳香烃含量的重要性[J].油气储运,2003,22(5):58-61.ZHANG L Y.Important to rationally reduce the content of aromatic hydrocarbon in products[J].Oil & Gas Storage and Transportation,2003,22(5):58-61(in Chinese). [12] ASTM International.Standard specification for aviation turbine fuels1:ASTM D1655-15c[S].West Conshohocken:ASTM,2015. [13] 王宝仁,孙乃有.石油产品分析[M].北京:化学工业出版社,2004:12-18.WANG B R,SUN N Y.Petroleum product analysis[M].Beijing:Chemical Industry Press,2004:12-18(in Chinese). [14] BLAKEY S,RYE L,WILSON C W.Aviation gas turbine alternative fuels:A review[J].Proceedings of the Combustion Institute,2011,33(2):2863-2885. [15] KONDO S,TAKIZAWA K,TAKAHASHI A,et al.A study on flammability limits of fuel mixtures[J].Journal of Hazardous Materials,2008,155(3):440-448. [16] 王洪波.航空替代燃料航程影响分析方法[D].北京:北京航空航天大学,2015:21-24.WANG H B.Range analytical method of Aviation alternative fuel[D].Beijing:Beihang University,2015:21-24(in Chinese). [17] 张帅,余雄庆.客机航线性能分析的分段解析方法[J].飞行力学,2012,30(6):502-506.ZHANG S,YU X Q.Piecewise analytic model for enroute performance of airliners[J].Flight Dynamics,2012,30(6):502-506(in Chinese). [18] SCHILTGEN B T,GIBSON A R,KEITH J D.Mission performance comparisons of subsonic airliners with current and future propulsion technologies[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.Reston:AIAA,2010:1-7. [19] CAVCAR M.Bréguet range equation[J].Journal of Aircraft,2006,43(5):1542-1544. [20] ALLISON D L,MYKLEBUST A.Alternative energy aircraft range equations and resulting aircraft design technology extrapolation[C]//53rd AIAA Aerospace Sciences Meeting.Reston:AIAA,2015:1-15. [21] Flight planning and performance manual[M].Washington,D.C.:Boeing Commercial Airplane Group,2010:21-138. [22] 737/757/767 digital flight data acquisition unit interface control and requirements document[M].Washington,D.C.:Boeing Commercial Airplane Group,1999:749-846. [23] CHUCK C J,DONNELLY J.The compatibility of potential bioderived fuels with jet A-1 aviation kerosene[J].Applied Energy,2014,118:83-91.
点击查看大图
计量
- 文章访问数: 1090
- HTML全文浏览量: 113
- PDF下载量: 651
- 被引次数: 0