Guidance law with impact angle constraints based on extended disturbance observer
-
摘要: 针对导弹拦截机动目标时要求限制终端攻击角度的问题,提出了一种基于扩张干扰观测器(EDO)的有限时间收敛制导律.考虑拦截时弹目相对运动关系,将导弹速度的时变、未知的运动目标加速度视为扰动,采用EDO对干扰进行实时的观测和补偿.通过引入快速跟踪微分器解决制导律中所需期望视线角速率无法直接获取的问题.同时,在制导律性能分析中引入了滑模捕捉能力的概念,分别对不同攻击场景和不同运动形式的机动目标进行拦截仿真,结果表明该制导律有良好的制导性能和鲁棒性,并与其他的制导律进行仿真对比,其所需过载小,脱靶量小,易于工程实现.Abstract: Aimed at the requirement for intercepting maneuvering targets with impact angle constraint, based on the technology of extended disturbance observer (EDO), a novel finite-time convergence guidance law was presented. Considering the relative motion between missile and target, the time-varying uncertainty of missile velocity and the unknown target acceleration were regarded as the disturbance, which is estimated and compensated by EDO. The fast tracking differentiator was introduced to solve the immeasurability problem of the desired line of sight angle rate. Moreover, the domain of sliding mode capturability was introduced to the performance evaluation of guidance law. The simulation experiments of different interception scenarios and different forms of maneuvering target were carried out. The simulation results show that the proposed guidance law has good interception performance and robustness, and it is of less missile acceleration and higher guidance accuracy, which is more helpful for the realization in engineering.
-
[1] Kim M,Grider K V.Terminal guidance for impact attitude angle constrained flight trajectories[J].IEEE Transactions on Aerospace and Electronic Systems,1973,9(6):852-859. [2] Kim B S,Lee J G,Han H S.Biased PNG law for impact with angular constraint[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):277-288. [3] Ryoo C K,Cho H,Tahk M J.Optimal guidance laws with terminal impact angle constraint[J].Journal of Guidance,Control,and Dynamics,2005,28(4):724-732. [4] Ryoo C K,Cho H,Tahk M J.Time-to-go weighted optimal guidance with impact angle constraints[J].IEEE Transactions on Control Systems Technology,2006,14(3):483-492. [5] Ohlmeyer E J,Philips C A.Generalized vector explicit guidance[J].Journal of Guidance,Control,and Dynamics,2006,29(2):261-268. [6] Jeon I S,Lee J I.Optimality of proportional navigation based on nonlinear formulation[J].IEEE Transactions on Aerospace and Electronic Systems,2010,46(4):2051-2055. [7] Utkin V.Variable structure systems with sliding modes[J].IEEE Transactions on Automatic Control,1977,22(2):212-222. [8] 贾庆忠,刘永善,刘藻珍.电视制导侵彻炸弹落角约束变结构反演制导律设计[J].宇航学报,2008,29(1):208-214. Jia Q Z,Liu Y S,Liu Z Z.Variable-structure backstepping guidance law with terminal angular constraint for video guided penetrating bomb[J]. Journal of Astronautics, 2008, 29(1): 208-214(in Chinese). [9] Harl N,Balakrishnan S N.Impact time and angle guidance with sliding mode control[J].IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449. [10] Sun W M,Zheng Z Q.3D variable structure guidance law based on adaptive model-following control with impact angular constraint[C]// Proceedings of the 26th Chinese Control Conference.Piscataway, NJ:IEEE Press,2007: 61-66. [11] Zhang Z X,Li S H,Luo S.Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint[J]. Aerospace Science and Technology, 2013, 31(1): 30-41. [12] 王晓芳,郑艺裕,林海.基于扰动观测器的终端角约束滑模导引律[J].系统工程与电子技术,2014,36(1): 111-116. Wang X F,Zheng Y Y, Lin H.Sliding mode guidance law with impact angle constraint based on disturbance observer[J].Systems Engineering and Electronics,2014,36(1):111-116(in Chinese). [13] 孙胜,张华明,周荻.考虑自动驾驶仪动特性的终端角度约束滑模导引律[J].宇航学报,2013,34(1):69-78. Sun S,Zhang H M,Zhou D.Sliding mode guidance law with autopilot lag for terminal angle constrained trajectories[J].Journal of Astronautics,2013,34(1):69-78(in Chinese). [14] Zhou D,Qu P P,Sun S.A guidance law with terminal impact angle constraint accounting for missile autopilot[J].Journal of Dynamic Systems Measurement and Control,2013,135(5):051009. [15] Kumar S R,Rao S,Ghose D.Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J].Journal of Guidance,Control,and Dynamics,2012,35(4):1230-1246. [16] Kumar S R,Rao S,Ghose D.Nonsingular terminal sliding mode guidance with impact angle constraints[J].Journal of Guidance,Control,and Dynamics,2014,37(4):1114-1130. [17] Xiong S F,Wang W H,Liu X D,et al.Guidance law against maneuvering targets with intercept angle constraint[J].ISA Transactions,2014,53(4):1332-1342. [18] 熊少锋,王卫红,刘晓东,等.考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律[J].控制与决策,2014,30(4):585-592. Xiong S F,Wang W H,Liu X D,et al.Impact angle guidance law considering missile's dynamics of autopilot[J].Control and Decision,2014,30(4):585-592(in Chinese). [19] 张运喜,孙明玮,陈增强.滑模变结构有限时间收敛制导律[J].控制理论与应用,2012,29(11):1413-1418. Zhang Y X,Sun M W,Chen Z Q.Sliding mode variable structure finite-time convergence guidance law[J].Control Theory & Applications,2012,29(11):1413-1418(in Chinese). [20] 王钊,李世华,费树岷.非奇异终端滑模导引律[J].东南大学学报,2009,39(1):87-90. Wang Z,Li S H,Fei S M.Nonsingular terminal sliding mode guidance law[J].Journal of Southeast University,2009,39(1):87-90(in Chinese). [21] 熊少锋,王卫红,王森.带攻击角度约束的非奇异快速终端滑模制导律[J].控制理论与应用,2014,31(3):269-278. Xiong S F,Xang W H,Wang S.Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J].Control Theory & Applications,2014,31(3):269-278(in Chinese). [22] Chen W H.Nonlinear disturbance observer-enhanced dynamic inversion control of missiles[J].Journal of Guidance,Control,and Dynamics,2003,26(1):161-166. [23] Chen X S,Yang J,Li S H,et al.Disturbance observer based multi-variable control of ball mill grinding circuits[J].Journal of Process Control,2009,19(7):1205-1213. [24] Xia Y Q,Chen R F,Pu F,et al.Active disturbance rejection control for drag tracking in mars entry guidance[J].Advances in Space Research,2014,53(5):853-861. [25] 韩京清.自抗扰控制技术[M].北京:国防工业出版社,2008:56-66. Han J Q.Active disturbance rejection control technique[M].Beijing:National Defence Industry Press,2008:56-66(in Chinese). [26] Guo B Z,Zhao Z L.On convergence of tracking differentiator[J].International Journal of Control,2011,84(4):693-701. [27] Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal of Control and Optimization,2000,38(8):751-766.
点击查看大图
计量
- 文章访问数: 965
- HTML全文浏览量: 124
- PDF下载量: 516
- 被引次数: 0