留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩张干扰观测器的带攻击角约束制导律

张皎 杨旭 刘源翔

张皎, 杨旭, 刘源翔等 . 基于扩张干扰观测器的带攻击角约束制导律[J]. 北京航空航天大学学报, 2015, 41(12): 2256-2268. doi: 10.13700/j.bh.1001-5965.2015.0013
引用本文: 张皎, 杨旭, 刘源翔等 . 基于扩张干扰观测器的带攻击角约束制导律[J]. 北京航空航天大学学报, 2015, 41(12): 2256-2268. doi: 10.13700/j.bh.1001-5965.2015.0013
ZHANG Jiao, YANG Xu, LIU Yuanxianget al. Guidance law with impact angle constraints based on extended disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2256-2268. doi: 10.13700/j.bh.1001-5965.2015.0013(in Chinese)
Citation: ZHANG Jiao, YANG Xu, LIU Yuanxianget al. Guidance law with impact angle constraints based on extended disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12): 2256-2268. doi: 10.13700/j.bh.1001-5965.2015.0013(in Chinese)

基于扩张干扰观测器的带攻击角约束制导律

doi: 10.13700/j.bh.1001-5965.2015.0013
详细信息
    通讯作者:

    张皎(1985-),男,湖北十堰人,博士研究生,zhangjiao48303@126.com,主要研究方向为制导控制一体化.

  • 中图分类号: V488.13

Guidance law with impact angle constraints based on extended disturbance observer

  • 摘要: 针对导弹拦截机动目标时要求限制终端攻击角度的问题,提出了一种基于扩张干扰观测器(EDO)的有限时间收敛制导律.考虑拦截时弹目相对运动关系,将导弹速度的时变、未知的运动目标加速度视为扰动,采用EDO对干扰进行实时的观测和补偿.通过引入快速跟踪微分器解决制导律中所需期望视线角速率无法直接获取的问题.同时,在制导律性能分析中引入了滑模捕捉能力的概念,分别对不同攻击场景和不同运动形式的机动目标进行拦截仿真,结果表明该制导律有良好的制导性能和鲁棒性,并与其他的制导律进行仿真对比,其所需过载小,脱靶量小,易于工程实现.

     

  • [1] Kim M,Grider K V.Terminal guidance for impact attitude angle constrained flight trajectories[J].IEEE Transactions on Aerospace and Electronic Systems,1973,9(6):852-859.
    [2] Kim B S,Lee J G,Han H S.Biased PNG law for impact with angular constraint[J].IEEE Transactions on Aerospace and Electronic Systems,1998,34(1):277-288.
    [3] Ryoo C K,Cho H,Tahk M J.Optimal guidance laws with terminal impact angle constraint[J].Journal of Guidance,Control,and Dynamics,2005,28(4):724-732.
    [4] Ryoo C K,Cho H,Tahk M J.Time-to-go weighted optimal guidance with impact angle constraints[J].IEEE Transactions on Control Systems Technology,2006,14(3):483-492.
    [5] Ohlmeyer E J,Philips C A.Generalized vector explicit guidance[J].Journal of Guidance,Control,and Dynamics,2006,29(2):261-268.
    [6] Jeon I S,Lee J I.Optimality of proportional navigation based on nonlinear formulation[J].IEEE Transactions on Aerospace and Electronic Systems,2010,46(4):2051-2055.
    [7] Utkin V.Variable structure systems with sliding modes[J].IEEE Transactions on Automatic Control,1977,22(2):212-222.
    [8] 贾庆忠,刘永善,刘藻珍.电视制导侵彻炸弹落角约束变结构反演制导律设计[J].宇航学报,2008,29(1):208-214. Jia Q Z,Liu Y S,Liu Z Z.Variable-structure backstepping guidance law with terminal angular constraint for video guided penetrating bomb[J]. Journal of Astronautics, 2008, 29(1): 208-214(in Chinese).
    [9] Harl N,Balakrishnan S N.Impact time and angle guidance with sliding mode control[J].IEEE Transactions on Control Systems Technology, 2012, 20(6): 1436-1449.
    [10] Sun W M,Zheng Z Q.3D variable structure guidance law based on adaptive model-following control with impact angular constraint[C]// Proceedings of the 26th Chinese Control Conference.Piscataway, NJ:IEEE Press,2007: 61-66.
    [11] Zhang Z X,Li S H,Luo S.Terminal guidance laws of missile based on ISMC and NDOB with impact angle constraint[J]. Aerospace Science and Technology, 2013, 31(1): 30-41.
    [12] 王晓芳,郑艺裕,林海.基于扰动观测器的终端角约束滑模导引律[J].系统工程与电子技术,2014,36(1): 111-116. Wang X F,Zheng Y Y, Lin H.Sliding mode guidance law with impact angle constraint based on disturbance observer[J].Systems Engineering and Electronics,2014,36(1):111-116(in Chinese).
    [13] 孙胜,张华明,周荻.考虑自动驾驶仪动特性的终端角度约束滑模导引律[J].宇航学报,2013,34(1):69-78. Sun S,Zhang H M,Zhou D.Sliding mode guidance law with autopilot lag for terminal angle constrained trajectories[J].Journal of Astronautics,2013,34(1):69-78(in Chinese).
    [14] Zhou D,Qu P P,Sun S.A guidance law with terminal impact angle constraint accounting for missile autopilot[J].Journal of Dynamic Systems Measurement and Control,2013,135(5):051009.
    [15] Kumar S R,Rao S,Ghose D.Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J].Journal of Guidance,Control,and Dynamics,2012,35(4):1230-1246.
    [16] Kumar S R,Rao S,Ghose D.Nonsingular terminal sliding mode guidance with impact angle constraints[J].Journal of Guidance,Control,and Dynamics,2014,37(4):1114-1130.
    [17] Xiong S F,Wang W H,Liu X D,et al.Guidance law against maneuvering targets with intercept angle constraint[J].ISA Transactions,2014,53(4):1332-1342.
    [18] 熊少锋,王卫红,刘晓东,等.考虑导弹自动驾驶仪动态特性的带攻击角度约束制导律[J].控制与决策,2014,30(4):585-592. Xiong S F,Wang W H,Liu X D,et al.Impact angle guidance law considering missile's dynamics of autopilot[J].Control and Decision,2014,30(4):585-592(in Chinese).
    [19] 张运喜,孙明玮,陈增强.滑模变结构有限时间收敛制导律[J].控制理论与应用,2012,29(11):1413-1418. Zhang Y X,Sun M W,Chen Z Q.Sliding mode variable structure finite-time convergence guidance law[J].Control Theory & Applications,2012,29(11):1413-1418(in Chinese).
    [20] 王钊,李世华,费树岷.非奇异终端滑模导引律[J].东南大学学报,2009,39(1):87-90. Wang Z,Li S H,Fei S M.Nonsingular terminal sliding mode guidance law[J].Journal of Southeast University,2009,39(1):87-90(in Chinese).
    [21] 熊少锋,王卫红,王森.带攻击角度约束的非奇异快速终端滑模制导律[J].控制理论与应用,2014,31(3):269-278. Xiong S F,Xang W H,Wang S.Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J].Control Theory & Applications,2014,31(3):269-278(in Chinese).
    [22] Chen W H.Nonlinear disturbance observer-enhanced dynamic inversion control of missiles[J].Journal of Guidance,Control,and Dynamics,2003,26(1):161-166.
    [23] Chen X S,Yang J,Li S H,et al.Disturbance observer based multi-variable control of ball mill grinding circuits[J].Journal of Process Control,2009,19(7):1205-1213.
    [24] Xia Y Q,Chen R F,Pu F,et al.Active disturbance rejection control for drag tracking in mars entry guidance[J].Advances in Space Research,2014,53(5):853-861.
    [25] 韩京清.自抗扰控制技术[M].北京:国防工业出版社,2008:56-66. Han J Q.Active disturbance rejection control technique[M].Beijing:National Defence Industry Press,2008:56-66(in Chinese).
    [26] Guo B Z,Zhao Z L.On convergence of tracking differentiator[J].International Journal of Control,2011,84(4):693-701.
    [27] Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal of Control and Optimization,2000,38(8):751-766.
  • 加载中
计量
  • 文章访问数:  965
  • HTML全文浏览量:  124
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-05
  • 修回日期:  2015-04-18
  • 网络出版日期:  2015-12-20

目录

    /

    返回文章
    返回
    常见问答