留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应阈值的粒子滤波非线性系统故障诊断

蒋栋年 李炜

蒋栋年, 李炜. 基于自适应阈值的粒子滤波非线性系统故障诊断[J]. 北京航空航天大学学报, 2016, 42(10): 2099-2106. doi: 10.13700/j.bh.1001-5965.2015.0611
引用本文: 蒋栋年, 李炜. 基于自适应阈值的粒子滤波非线性系统故障诊断[J]. 北京航空航天大学学报, 2016, 42(10): 2099-2106. doi: 10.13700/j.bh.1001-5965.2015.0611
JIANG Dongnian, LI Wei. Fault diagnosis of particle filter nonlinear systems based on adaptive threshold[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2099-2106. doi: 10.13700/j.bh.1001-5965.2015.0611(in Chinese)
Citation: JIANG Dongnian, LI Wei. Fault diagnosis of particle filter nonlinear systems based on adaptive threshold[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2099-2106. doi: 10.13700/j.bh.1001-5965.2015.0611(in Chinese)

基于自适应阈值的粒子滤波非线性系统故障诊断

doi: 10.13700/j.bh.1001-5965.2015.0611
基金项目: 国家自然科学基金(61364011);甘肃省自然科学基金(2015GS05221)
详细信息
    作者简介:

    蒋栋年,男,博士研究生,讲师。主要研究方向:动态系统故障诊断与容错控制。E-mail:dreamjdn@126.com;李炜,女,硕士,教授。主要研究方向:动态系统故障诊断与容错控制。Tel.:0931-2976020,E-mail:liwei@lut.cn

    通讯作者:

    李炜,Tel.:0931-2976020,E-mail:liwei@lut.cn

  • 中图分类号: TP277

Fault diagnosis of particle filter nonlinear systems based on adaptive threshold

Funds: National Natural Science Foundation of China (61364011); Natural Science Foundation of Gansu Province of China (2015GS05221)
  • 摘要: 针对实际非线性系统传统方法难以实现可靠故障诊断的问题,采用粒子滤波算法,利用对数似然函数和作为评价指标,并借助自适应阈值的设计,研究了非线性非高斯系统的故障检测和故障隔离。阈值的选取,是准确判别系统是否发生故障的标准,本文通过分析非线性系统残差的统计特性,在判定残差统计特性成正态分布的基础上,设计了一种基于粒子滤波故障诊断的自适应阈值方法,减少了故障诊断的漏报和误报。通过非恒温连续搅拌水箱式反应堆的仿真实例,验证了该方法在故障诊断中的准确性和有效性。

     

  • [1] GERTLER J J.Fault detection and diagnosis in engineering systems[M].New York:Marcel Dekker,Inc.,1998:36-58.
    [2] GHANTASALA S,EL-FARRA N H.Robust actuator fault isolation and management in constrained uncertain parabolic PDE systems[J].Automatica,2009,45(10):2368-2373.
    [3] FENG K,JIANG Z,HE W.Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet[J].Measurement,2011,44(9):1582-1591.
    [4] TAFAZOLI S,SUN X.Hybrid system state tracking and fault detection using particle filters[J].IEEE Transactions on Control Systems Technology,2006,14(6):1078-1087.
    [5] MICHELE C,PIERO B,PIETRO T,et al.Interacting multiple-models,state augmented particle filtering for fault diagnostics[J].Probabilistic Engineering Mechanics,2015,40:12-24.
    [6] 杜京义,殷梦鑫.一种改进的粒子滤波算法应用于故障诊断[J].系统仿真学报,2014,26(1):62-66.DU J Y,YIN M X.Improved algorithm of particle filter applied to fault diagnosis[J].Journal of System Simulation,2014,26(1):62-66(in Chinese).
    [7] ZHANG B,SCONYERS C,BYINGTON C,et al.A probabilistic fault detection approach:Application to bearing fault detection[J].IEEE Transactions on Industrial Electronics,2011,58(5):2011-2018.
    [8] WEI T,HUANG Y,CHEN C.Adaptive sensor fault detection and identification using particle filter algorithms[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2009,39(2):201-213.
    [9] MICHAL Z.Online fault detection of a mobile robot with a parallelized particle filter[J].Neurocomputing,2014,126:151-165.
    [10] TADIC' P,DUROVIC' Z.Particle filtering for sensor fault diagnosis and identification in nonlinear plants[J].Journal of Process Control,2014,24(4):401-409.
    [11] CHEN C C,GEORGE V C,MARCOS E.Machine remaining useful life prediction:An integrated adaptive neuro-fuzzy and high-order particle filtering approach[J].Mechanical Systems and Signal Processing,2012,28:597-607.
    [12] YU J.A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis[J].Journal of Process Control,2012,22(4):778-788.
    [13] VICENC P,SAUL M D,JOAQUIM B.Adaptive threshold generation in robust fault detection using interval models:Time-domain and frequency-domain approaches[J].Interational Journal of Adaptive Control and Signal Process,2013,27(10):873-901.
    [14] JOHNSON A L.A new algorithm for adaptive threshold generation in robust fault detection based on a sliding window and global optimization[C]//Proceedings of European Control Conference 1999,ECC'99.Piscataway,NJ:IEEE Press,1999:1546-1551.
    [15] JOHANSSON A,BASK M,NORLANDER T.Dynamic threshold generators for robust fault detection in linear systems with parameter uncertainty[J].Automatica,2006,42(7):1095-1106.
    [16] DING X,FRANK P M.Frequency domain approach and threshold selector for robust model-based fault detection and isolation[C]//IFAC/IMACS Symposium on Fault Detection, Supervision and Safety for Technical Processes-SAFEPROCESS'91.Tarrytown,NY:Pergamon Press Inc.,1992:271-276.
    [17] RAMBEAUX F,HAMELIN F,SAUTER D.Optimal thresholding for robust fault detection of uncertain systems[J].International Journal of Robust and Nonlinear Control,2000,10(4):1155-1173.
    [18] GORDON N J,SALMOND D J,SMITH A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEEE Proceedings on Radar and Signal Processing,1993,140(2):107-113.
    [19] ALROWAIE F,GOPALUNI R,KWOK K.Fault detection and isolation in stochastic non-linear state-space models using particle filters[J].Control Engineering Practice,2012,20(10):1016-1032.
    [20] BHATTACHARYA R,WAYMIRE E C.Stochastic processes with applications[M].New York:Wiley,1990:40-55.
    [21] SHI Z,GU F,LENNOX B,et al.The development of an adaptive threshold for model-based fault detection of a nonlinear electro-hydraulic system[J].Control Engineering Practice,2005,13(11):1357-1367.
    [22] KADIRKAMANATHAN V.Particle filtering-based fault detection in non-linear stochastic systems[J].International Journal of Systems Science,2002,33(4):259-265.
  • 加载中
计量
  • 文章访问数:  943
  • HTML全文浏览量:  66
  • PDF下载量:  484
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 网络出版日期:  2016-10-20

目录

    /

    返回文章
    返回
    常见问答