Influence of rotor-stator interaction on rotor blade flutter characteristics
-
摘要: 在不同气动工况、不同几何模型下,采用自行开发程序对全环多排的高压压气机进行了流固耦合数值模拟,分析了进口导流叶片(IGV,以下简称导叶)对转子叶片颤振稳定性的影响。通过对气动弹性标准算例4的数值模拟验证了程序在颤振领域的有效性。针对导叶-转子模型和单转子模型,考察了近堵塞点、近设计点和近失速点3个工况下,节径变化对叶片颤振稳定性的影响,给出了气动弹性最不稳定状态对应的叶片振动形式。通过对比发现,导叶作用随工况而异,近堵塞点导叶使得转子1阶弯曲模态气动阻尼提高130.63%。研究表明:导叶引起的非定常压力波反射增强了转子叶片的非定常压力扰动幅值,使得弯曲振型的颤振稳定性增强。基于单转子模型的颤振分析给出了不准确的气动阻尼值。Abstract: A full-annulus multi-row coupled fluid-structure simulation on a certain high pressure compressor was conducted by an in-house program to analyze the influence of inlet guide vane (IGV) on rotor blade flutter stability in different operation conditions and geometry models. The effectiveness of the program in the field of turbomachinery flutter was verified by numerically simulating the aeroelastic standard configuration 4 for the IGV-rotor model and isolated rotor model respectively, detailed fluid-structure interaction analyses were performed at near choked, near design and near stall operation points to assess the effect of nodal diameter on the flutter stability. The least unstable vibration form of blade can be presented. By the comparison of the results, the influence of IGV varies with the operation conditions. At the near choked point, the rotor aerodynamic damping of the first bending mode increases by 130.63% via the IGV. The results indicate that the existence of the guide vane causes the unsteady pressure wave reflection, which can enhance the unsteady oscillating pressure amplitudes on the rotor blade surface and improve the flutter stability of the bending mode. Flutter analyses based on isolated rotor model will give inaccurate aerodynamic damping values.
-
[1] ISOMURA K,GILES M B.A numerical study of flutter in a transonic fan[J].Journal of Turbomachinery,1998,120(3):500-507. [2] SRIVASTAVA R,KEITH T G.Shock induced flutter of turbomachinery blade row[C]//ASME Turbo Expo 2004:Power for Land,Sea,and Air.New York:ASME,2004:487-496. [3] IM H S,ZHA G C.Flutter prediction of a transonic fan with travelling wave using fully coupled fluid/structure interaction[C]//ASME Turbo Expo 2013:Turbine Technical Conference and Exposition.New York:ASME,2013. [4] 张小伟,王延荣,许可宁.叶轮机械叶片颤振的影响参数[J].航空动力学报,2011,26(7):1557-1561. ZHANG X W,WANG Y R,XU K N.Effects of parameters on blade flutter in turbomachinery[J].Journal of Aerospace Power,2011,26(7):1557-1561(in Chinese). [5] 张小伟,王延荣.叶片间相位角对叶片颤振的影响[J].航空动力学报,2010,25(2):412-416. ZHANG X W,WANG Y R.Influence of interblade phase angle on the flutter of rotor blades[J].Journal of Aerospace Power,2010,25(2):412-416(in Chinese). [6] 金琰,袁新.三维透平叶片扭转颤振问题的流固耦合数值研究[J].工程热物理学报,2004,25(1):41-44. JIN Y,YUAN X.Numerical analysis of 3D turbine blades's torsional flutter by fluid-structure coupling method[J].Jounal of Engineering Thermophysics,2004,25(1):41-44(in Chinese). [7] LI W,SUN Y,REN X,et al.The influence of rotor-stator spacing on the loss in one-stage transonic compressor[C]//Proceedings of ASME Turbo Expo 2009:Power for Land,Sea and Air.New York:ASME,2009:1707-1715. [8] NG W F,OBRIEN W F,OLSEN T L.Experimental investiga-tion of unsteady fan flow interaction with downstream struts[J].Journal of Propulsion & Power,1987,3(2):157-163. [9] SAREN V E,SAVIN N M,DORNEY D J,et al.Experimental and numerical investigation of airfoil clocking and inner-blade-row gap effects on axial compressor performance[J].International Journal of Turbo & Jet Engines,1998,15(4):235-252. [10] HUANG X Q,HE L,BELL D L,et al.Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2006,220(1):25-35. [11] LI H D,HE L.Blade aerodynamic damping variation with rotor-stator gap:A computational study using single-passage approach[J].Journal of Turbomachinery,2005,127(3):573-579. [12] HSU K,HOYNIAK D,ANAND M S.Full-annulus multi-row flutter analyses[C]//ASME Turbo Expo 2012:Turbine Technical Conference and Exposition.New York:ASME,2012:1453-1462. [13] 郭恩民,周盛,陆亚钧.叶片排干涉对叶片颤振和强迫响应影响的研究[J].航空学报,1999,20(4):343-347. GUO E M,ZHOU S,LU Y J.Investigation on blade row interaction effect on flutter and forced response[J].Acta Aeronautica et Astronautica Sinica,1999,20(4):343-347(in Chinese). [14] 张陈安,叶正寅,刘锋, 等.进口导流叶片对转子叶片颤振特性的影响[J].推进技术,2010,31(3):335-339. ZHANG C A,YE Z Y,LIU F,et al.Investigations on flutter characteristics of rotor blade with IGV/fan interactions[J].Journal of Propulsion Technology,2010,31(3):335-339(in Chinese). [15] 郑赟,杨慧.跨音速风扇全环叶片颤振特性的流固耦合分析[J].北京航空航天大学学报,2013,39(5):626-630. ZHENG Y,YANG H.Full assembly fluid/structured flutter analysis of a transonic fan[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(5):626-630(in Chinese). [16] 郑赟. 基于非结构网格的气动弹性数值方法研究[J].航空动力学报,2009,24(9):2069-2077. ZHENG Y.Computational aeroelasticity with an unstructured grid method[J].Journal of Aerospace Power,2009,24(9):2069-2077(in Chinese). [17] 张锦,刘晓平.叶轮机振动模态分析理论及数值方法[M].北京:国防工业出版社,2001:337-367. ZHANG J,LIU X P.Theory and numerical methods for modal analysis of turbomachine vibration[M].Beijing:National Defense Industrial Press,2001:337-367(in Chinese). [18] BÖLCS A,FRANSSON T H.Aeroelasticity in turbomachines:Comparison of theoretical and experimental cascade results[M].EPFL:Communication du Laboratoire de Thermique Appliquée et de Turbomachines,1986:97-122. [19] FRANSSON T H,VERDON J M.Updated report on standard configurations for unsteady flow through vibrating axial-flow turbomachine cascades:Status as of July 1991[R].Stockholm:Royal Institute of Technology,1991. [20] CHIMA R V. Calculation of multistage turbomachinery using steady characteristic boundary conditions:AIAA-1998-0968[R].Reston:AIAA,1998. [21] MATHUR S R. Unsteady flow simulations using unstructured sliding meshes:AIAA-1994-2333[R].Reston:AIAA,1994. [22] VAHDATI M,SIMPSON G,IMREGUN M,et al.Mechanisms for wide-chord fan blade flutter[J].Journal of Turbomachinery,2011,133(4):1396-1402.
点击查看大图
计量
- 文章访问数: 1219
- HTML全文浏览量: 162
- PDF下载量: 600
- 被引次数: 0