Analysis on aerodynamic characteristics of morphing wing with flexible trailing edge
-
摘要: 应用后缘主动变弯度技术的机翼能够改善飞行器的气动性能,其气动特性的研究对于未来可变形机翼的设计具有重要意义。以柔性后缘可连续变弯度二元机翼为研究对象,在Fluent计算平台上采用可压缩Navier-Stokes方程和Spalart-Allmaras(S-A)湍流模型进行气动力数值研究,从压力分布、流场结构和机翼变形方式等方面分析了可变形机翼的气动特性。数值计算结果表明,可变形机翼升力线斜率和最大升力系数与常规带简单襟翼的机翼基本一致,但失速攻角较小;在失速之前,可变形机翼具有较高的升力系数和升阻比,但同时产生较大的低头力矩。柔性后缘下偏到一定角度可以抑制后缘涡的前传,在失速后升力系数出现缓慢上升,增大了有效攻角的范围,具有较好的失速特性。Abstract: The wing applying active variable camber trailing edge technology can improve aircraft's aerodynamic performance, and the study of aerodynamic characteristics is of great significance to the design of the morphing wing. Choosing the 2D variable camber wing with flexible trailing edge as the object of study, the compressible Navier-Stokes equation and Spalart-Allmaras (S-A) turbulence model were applied to investigate the aerodynamics of morphing wing numerically by using the software Fluent. Aerodynamic characteristics were studied from the perspective of pressure distribution, flow field structure and the deformation mode. The numerical results show that the morphing wing has almost the same slope of lift curve and maximum lift coefficient with the conventional wing with simple flap, but has lower stall angle of attack. It has higher lift coefficient, lift-to-drag ratio, and higher nose-down pitching moment coefficient than conventional wing before the occurrence of stall. When flexible trailing edge deflects downward to a special angle, trailing edge vortex is suppressed to expand forward. The lift coefficient slowly rises after the stall, which increases the range of effective angle of attack of morphing wing and leads to a good stall characteristic.
-
Key words:
- morphing wing /
- flexible trailing edge /
- variable camber /
- aerodynamic characteristics /
- stall
-
[1] RODRIGUEZ A R.Morphing aircraft technology survey[C]//45th AIAA Aerospace Sciences Meeting 2007.Reston:AIAA,2007,21:15064-15079. [2] WEISSHAAR T A.Morphing aircraft systems:Historical perspectives and future challenges[J].Journal of Aircraft,2013,50(2):337-353. [3] 高彦峰.可变形翼型的非定常气动特性研究[D].合肥:中国科学技术大学,2012:5. GAO Y F.Study on the unsteady aerodynamics characteristics for the morphing airfoil[D].Hefei:University of Science and Technology of China,2012:5(in Chinese). [4] MONNER H P, SACHAU D,BREITBACH E.Design aspects of the elastic trailing edge for an adaptive wing:Report ADP10488[R].Neuilly-sur-Seine:RTO,1999:14.1-14.8. [5] AHMED S, GUO S J.Optimal design and analysis of a wing with morphing high lift devices[C]//AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2013. [6] VASISTA S, TONG L Y,WONG K C.Realization of morphing wings:A multidisciplinary challenge[J].Journal of Aircraft,2012,49(1):11-28. [7] DI MATTEO N, GUO S J,AHMED S.Design and analysis of a morphing flap structure for high lift wing[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Material Conference.Reston:AIAA,2010. [8] DI MATTEO N, GUO S J,LI D.Morphing trailing edge flap for high lift wing[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Material Conference.Reston:AIAA,2011. [9] YOKOZEKI T, SUGIURA A.Development of variable camber morphing airfoil using corrugated structure[J].Journal of Aircraft,2014,51(3):1023-1029. [10] 尹维龙, 石庆华,田冬奎.变体后缘的索网传动机构设计与分析[J].航空学报,2013,34(8):1824-1831. YIN W L,SHI Q H,TIAN D K.Design and analysis of transmission mechanism with cable networks for morphing trailing edge[J].Acta Aeronautica et Astronautica Sinica,2013,34(8):1824-1831(in Chinese). [11] ON W C,GOMES A A, SULEMAN A.Optimal design of a morphing airfoil using spectral level set methodology[C]//6th World Congress on Structural and Multidisciplinary Optimization.Rio de Janeiro:[s.n.],2005. [12] URNES J, NGUYEN N.A mission adaptive variable camber flap control system to optimize high lift and cruise lift-to-drag ratios of future N+3 transport aircraft[C]//51st AIAA Aerospace Sciences Meeting.Reston:AIAA,2013. [13] URNES J M,MORRIS C, SHEAHAN J,et al.Control system design for a variable camber continuous trailing edge flap system on an elastic wing[C]//55th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2014. [14] IPPOLITO C, NGUYEN N,TOTAH J.Initial assessment of a variable-camber continuous trailing-edge flap system on a rigid wing for drag reduction in subsonic cruise[C]//AIAA Infotech Aerospace Conference.Reston:AIAA,2013. [15] LAMBIE B, KRENIK A,TROPEA C.Numerical simulation of an airfoil with a flexible trailing edge in unsteady flow[C]//51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.Reston:AIAA,2010. [16] STEENHUIZEN D, TOOREN M V.The implementation of a knowledge-based framework for the aerodynamic optimization of a morphing wing device[J].Advanced Engineering Informatics,2012,26(2):207-218. [17] 杨智春, 解江.柔性后缘自适应机翼的概念设计[J].航空学报,2009,30(6):1028-1034. YANG Z C,XIE J.Concept design of adaptive wing with flexible trailing edge[J].Acta Aeronautica et Astronautica Sinica,2009,30(6):1028-1034(in Chinese). [18] 解江, 杨智春,党学会.柔性后缘自适应机翼气动特性和操纵反效特性的比较分析[J].工程力学,2009,26(10):245-251. XIE J,YANG Z C,DANG X H.Comparative study on aerodynamics and control reversal characteristics of adaptive wings with flexible trailing edge[J].Engineering Mechanicals,2009,26(10):245-251(in Chinese). [19] 陈钱, 白鹏,尹维龙,等.可连续光滑偏转后缘的变弯度翼型气动特性分析[J].空气动力学学报,2010,28(1):46-53. CHEN Q,BAI P,YIN W L,et al.Analysis on the aerodynamic characteristics of variable camber airfoils with continuous smooth morphing trailing edge[J].Acta Aerodynamica Sinica,2010,28(1):46-53(in Chinese). [20] KAUL U K, NGUYEN N T.Drag optimization study of variable camber continuous trailing edge flap using overflow[C]//32nd AIAA Applied Aerodynamics Conference.Reston:AIAA,2014. [21] KRZYSIAK A, NARKIEWICZ J.Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J].Journal of Aircraft,2006,43(2):407-418. [22] RUMSEY C L. 2D N00:2D NACA 0012 airfoil validation case[EB/OL].Langley Research Center,2014(2014-12-18)[2014-01-05].http://turbmodels.larc.nasa.gov/naca0012_val.html.
点击查看大图
计量
- 文章访问数: 1362
- HTML全文浏览量: 45
- PDF下载量: 760
- 被引次数: 0