-
摘要:
飞行器气动布局的选型和优化技术在总体设计中处于关键地位,在临近空间飞行的飞行器对升阻比和操控性能都提出了更高的要求。翼身组合的升力体外形由于兼顾内部装填以及升阻特性成为了目前高速飞行器主要的设计方向。以一类具有普适性的面对称升力体外形为基础,采用相关性分析手段提取出飞行器的关键几何参数,挖掘出几何参数对所关心的总体性能指标的影响度大小,并建立起基于CFD方法的气动布局优化平台,以总体性能指标为约束,优化出高升阻比外形,通过风洞试验验证了优化设计方法的有效性,为高速飞行器的气动布局工程化设计提供了有效的技术手段。
Abstract:Aerodynamic configuration design and optimization are vital to overall design of aircraft. Higher requirements of lift-drag ratio and control performance are put forward for near space vehicles. The lifting-body shape of the wing-body combination has become the main design direction of the hypersonic vehicle due to its internal loading and lift-drag characteristics. According to a class of universal symmetry lifting-body configuration, the key geometry parameters of vehicle were extracted using interrelation analysis method. The effect of geometry parameters on concerned overall performance was dug out. Aerodynamic shape optimization platform was established based on CFD method. With several key overall performance constraints, high lift-drag ratio shape was designed and optimized. The effectiveness of optimal design has been verified by wind tunnel test, which will provide an effective technical means for rapid engineering aerodynamic shape design of hypersonic vehicle.
-
Key words:
- hypersonic vehicle /
- optimal design /
- overall performance /
- wind tunnel test /
- numerical calculation
-
表 1 参数化建模的主要几何参数
Table 1. Main geometrical parameters of parametric modelling
参数 物理意义 取值范围 α1up/(°) 一锥上锥角 (8, 15) α2up/(°) 二锥上锥角 (0, 5) βWB/(°) 水平翼后端面处翼安装角 (-2, +2) Rhead/mm 端头半径 (10, 50) Rfyrd/mm 俯仰舵前缘半径 (10, 20) CL1 一锥长度占总长的百分比 (0, 0.5) ρwing 水平翼二次曲线形状系数 (0.3, 0.9) CWS 水平翼起始位置长度系数 (0, 1) αwing/(°) 水平翼后缘后掠角 (-50, 50) αfyrd/(°) 俯仰舵前缘后掠角 (0, 50) dBlw/mm BB下截面宽度 (358, 558) ηfyrd/mm 俯仰舵外露展长 (600, 700) L/mm 飞行器总长 (2 000, 3 000) fxrd_turn 俯仰舵舵轴位置系数 (0.1, 0.9) Czita 俯仰舵在体身z向位置系数 (0.2, 0.8) CLW 水平翼截止位置长度系数 (0, 1) 表 2 一阶灵敏度函数
Table 2. First-order sensitivity function
类型 表达式 正则表达式 维数 一阶基准 ∂f/∂x Δf/Δx f/x 一阶百分比 (∂f/∂x)∂x Δf f 一阶对数 (∂f/∂x)(x/f) (Δf/Δx)(x/f) 表 3 参数敏感性排序
Table 3. Rank of sensitive parameters on each factor
尺寸定义 k(按影响度从大到小排序) 长度 L Rfyrd ηfyrd dBlw Rhead 角度 α1up βWB α2up αwing αfyrd 系数 CLW CL1 CWS ρwing Czita 表 4 典型马赫数状态
Table 4. Parameters of typical Mach number
H/km Ma T0/K P0/(105Pa) /10-3 Re∞L/(107m-1) 33.02 5.16 290 6.70 2.43 1.97 38.21 8.17 435 33.28 4.16 1.64 41.72 10.60 596 95.90 5.69 1.43 表 5 优化前后气动特性(Ma=8,α=8°)
Table 5. Aerodynamic characteristics before and after optimization (Ma=8, α=8°)
外形 CA CN κ 初始外形 0.286 2 1.599 6 3.051 5 优化外形 0.192 9 1.434 0 3.566 8 -
[1] BOWCUTT K G.A perspective on the future of aerospace vehicles design:AIAA-2003-6957[R].Reston:AIAA, 2003. [2] KINNEY D J.Aerodynamic shape optimization of hypersonic vehicles:AIAA-2006-239[R].Reston:AIAA, 2006. [3] KULFAN B M, BUSSOLETTI J E."Fundamental" parametric geometry representations for aircraft component shapes:AIAA-2006-6948[R].Reston:AIAA, 2006. [4] KULFAN B M.Recent extensions and applications of the "CST" universal parametric geometry representation method:AIAA-2007-7709[R].Reston:AIAA, 2007. [5] 关晓辉, 李占科, 宋笔锋.CST气动外形参数化方法研究[J].航空学报, 2012, 33(4):625-633. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201204007.htmGUAN X H, LI Z K, SONG B F.A study on CST aerodynamic shape parameterization method[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(4):625-633(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201204007.htm [6] GUMBERT C R, HOU G J W, NEWMAN P A.Simultaneous aerodynamic analysis and design optimization (SAADO) for a 3D flexible wing:AIAA-2001-1107[R].Reston:AIAA, 2001. [7] NEMEC M, ZINGG D W, PULLIAM T H.Multi-point and multi-objective aerodynamic shape optimization:AIAA-2002-5548[R].Reston:AIAA, 2002. [8] 夏露.飞行器外形气动、隐身综合优化设计方法研究[D].西安:西北工业大学, 2004:35-44.XIA L.Aerodynamic and stealth synthesis optimization design for aircraft[D].Xi'an:Northwestern Polytechnical University, 2004:35-44(in Chinese). [9] 张彬乾, 罗烈, 陈真利, 等.飞翼布局隐身翼型优化设计[J].航空学报, 2014, 35(4):957-967. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201404006.htmZHANG B Q, LUO L, CHEN Z L, et al.On stealth airfoil optimization design for flying wing configuration[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(4):957-967(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201404006.htm [10] 李天, 武哲, 李敬.飞机外形参数的气动与隐身综合优化设计[J].北京航空航天大学学报, 2001, 27(1):76-78. http://bhxb.buaa.edu.cn/CN/abstract/abstract11069.shtmlLI T, WU Z, LI J.Integrated aerodynamic-stealth optimal design of aircraft configuration parameters[J].Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1):76-78(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11069.shtml [11] 邓海强, 余雄庆.亚声速翼身融合无人机概念外形参数优化[J].航空学报, 2014, 35(5):1200-1208. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201405004.htmDENG H Q, YU X Q.Configuration optimization of subsonic blended wing body UAV conceptual design[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1200-1208(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201405004.htm [12] 王荣, 张学军, 纪楚群, 等.基于高效数值方法的一种高超声速飞行器外形气动力/热综合优化设计研究[J].空气动力学学报, 2014, 32(5):618-622. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201405008.htmWANG R, ZHANG X J, JI C Q, et al.Aerodynamic heat and force optimization for a hypersonic vehicle based on effective space marching and stream trace methods[J].Acta Aerodynamica Sinica, 2014, 32(5):618-622(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201405008.htm [13] 唐伟, 桂业伟.通用大气飞行器的参数化气动布局研究[J].空气动力学学报, 2009, 27(3):325-328. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200903010.htmTANG W, GUI Y W.Aerodynamic configuration design for a parameterized lifting body common aero vehicle[J].Acta Aerodynamica Sinica, 2009, 27(3):325-328(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200903010.htm [14] 叶友达.近空间高速飞行器气动特性研究与布局设计优化[J].力学进展, 2009, 39(6):683-694. http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200906010.htmYE Y D.Study on aerodynamic characteristics and design optimization for high speed near space vehicles[J].Advances in Mechanics, 2009, 39(6):683-694(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200906010.htm [15] 王旭刚, 杜涛, 张耐民.亚轨道可重复使用飞行器(SRLV)气动布局优化方法研究[J].空气动力学学报, 2014, 32(1):96-100. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201401015.htmWANG X G, DU T, ZHANG N M.Suborbital reuse launch vehicle aerodynamic optimization method of layout[J].Acta Aerodynamica Sinica, 2014, 32(1):96-100(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201401015.htm [16] KIM H J, SASAKI D, OBAYASHI S, et al.Aerodynamic optimization of supersonic transport wing using unstructured adjoint method[J].AIAA Journal, 2001, 39(6):1011-1020. doi: 10.2514/2.1441 [17] MIALON B, FOL T, BONNAUD C.Aerodynamic optimization of subsonic flying wing configurations:AIAA-2002-2931[R].Reston:AIAA, 2002. [18] SASAKI D, YANG G W, OBAYASHI S.Automated aerodynamic optimization system for SST wing-body configuration:AIAA-2002-5549[R].Reston:AIAA, 2002. [19] 左英桃, 傅林, 高正红, 等.机翼-机身-短舱-挂架外形气动优化设计方法[J].航空动力学报, 2013, 28(9):2009-2015. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309017.htmZUO Y T, FU L, GAO Z H, et al.Aerodynamic optimization design of wing-body-nacelle-pylon configuration[J].Journal of Aerospace Power, 2013, 28(9):2009-2015(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309017.htm [20] SHINKYU J K Y.Efficient optimization design method using Kriging model:AIAA-2004-118[R].Reston:AIAA, 2004. [21] KANAZAKI M, TANAKA K, JEONG S, et al.Multi-objective aerodynamic optimization of elements' setting for high-lift airfoil using Kriging model:AIAA-2006-1471[R].Reston:AIAA, 2006. [22] 许瑞飞, 宋文萍, 韩忠华.改进Kriging模型在翼型气动优化设计中的应用研究[J].西北工业大学学报, 2010, 28(4):503-510. http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201004006.htmXU R F, SONG W P, HAN Z H.Application of improved Kriging-model-based optimization method in airfoil aerodynamic design[J].Journal of Northwestern Polytechnical University, 2010, 28(4):503-510(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201004006.htm [23] 任庆祝, 宋文萍.基于Kriging模型的翼型多目标气动优化设计研究[J].航空计算技术, 2009, 39(3):77-82. http://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200903019.htmREN Q Z, SONG W P.Multi-objective aerodynamic design optimization for airfoil using Kriging model[J].Aeronautical Computing Technique, 2009, 39(3):77-82(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKJJ200903019.htm [24] KRIGE D G.A statistical approach to some mine valuations and allied problems at the Witwatersrand[D].Johannesburg:University of Witwatersrand, 1951. [25] HICKERNELL F.A generalized discrepancy and quadrature error bound[J].Mathematics of Computation of the American Mathematical Society, 1998, 67(221):299-322. doi: 10.1090/mcom/1998-67-221 [26] FINKEL D E.Global optimization with the DIRECT algorithm[D].Raleigh North Carolina:North Carolina State University, 2005.