留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ERT/UTT双模态传感器尺寸优化仿真

孙红丽 谭超 董峰

孙红丽, 谭超, 董峰等 . ERT/UTT双模态传感器尺寸优化仿真[J]. 北京航空航天大学学报, 2017, 43(2): 388-394. doi: 10.13700/j.bh.1001-5965.2016.0120
引用本文: 孙红丽, 谭超, 董峰等 . ERT/UTT双模态传感器尺寸优化仿真[J]. 北京航空航天大学学报, 2017, 43(2): 388-394. doi: 10.13700/j.bh.1001-5965.2016.0120
SUN Hongli, TAN Chao, DONG Fenget al. Simulation based sensor size optimization for dual-modality ERT/UTT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 388-394. doi: 10.13700/j.bh.1001-5965.2016.0120(in Chinese)
Citation: SUN Hongli, TAN Chao, DONG Fenget al. Simulation based sensor size optimization for dual-modality ERT/UTT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2): 388-394. doi: 10.13700/j.bh.1001-5965.2016.0120(in Chinese)

ERT/UTT双模态传感器尺寸优化仿真

doi: 10.13700/j.bh.1001-5965.2016.0120
基金项目: 

国家自然科学基金 61473206

国家自然科学基金 61227006

详细信息
    作者简介:

    孙红丽, 女, 硕士研究生。主要研究方向:过程层析成像

    谭超, 男, 副教授。主要研究方向:多相流过程参数检测、过程层析成像

    董峰, 男, 教授。主要研究方向:多相流过程参数检测、过程层析成像

    通讯作者:

    谭超, E-mail:tanchao@tju.edu.cn

  • 中图分类号: TP212.6

Simulation based sensor size optimization for dual-modality ERT/UTT

Funds: 

National Natural Science Foundation of China 61473206

National Natural Science Foundation of China 61227006

More Information
  • 摘要:

    针对电阻/超声双模态层析成像传感器配置优化问题,提出管道同一截面内配置电极与超声探头,实现对管道内同一被测对象同一时间的检测。采用数值仿真方法,考察电学敏感场与超声敏感场在管道内分布情况,优化双敏感场的互补信息获取范围,获得被测场域内同一被测对象的多敏感信息。为降低被测截面内电极对超声敏感场的影响,定义双敏感场的最优灵敏度与均匀度,利用数值仿真方法对电极与超声探头的安装结构与尺寸进行优化,最终获得16电极与16超声探头间隔放置的最优空间结构与相对尺寸。

     

  • 图 1  超声探头安装位置与声压强度检测位置

    Figure 1.  Ultrasonic sensor installation position and sound pressure intensity detection position

    图 2  声压强度分布

    Figure 2.  Sound pressure intensity distribution

    图 3  无电极时超声场分布

    Figure 3.  Ultrasonic field distribution with no electrode

    图 4  16电极时超声场分布

    Figure 4.  Ultrasonic field distribution with 16 electrodes

    图 5  30电极时超声场分布

    Figure 5.  Ultrasonic field distribution with 30 electrodes

    图 6  16电极、16超声探头结构

    Figure 6.  Configuration of 16 electrodes and 16 ultrasonic transducers

    图 7  780个正方形区域、激励电极和接地电极位置

    Figure 7.  Position of 780 square mesh, exciting electrodes and grounding electrodes

    图 8  管道内电学灵敏度分布

    Figure 8.  Electrical sensitivity distribution inside pipeline

    图 9  管道内超声灵敏度分布

    Figure 9.  Ultrasonic sensitivity distribution inside pipeline

    图 10  电极相对宽度对超声场平均灵敏度与标准差的影响

    Figure 10.  Influence of relative electrode width on average sensitivity and standard deviation of ultrasonic field

    图 11  超声探头相对直径对超声敏感场平均灵敏度的影响

    Figure 11.  Influence of ultrasonic sensor relative diameter on average sensitivity of ultrasonic field

    图 12  超声探头相对直径与电极相对宽度对超声敏感场M/d的影响

    Figure 12.  Influence of ultrasonic sensor relative diameter and relative electrode width on M/d of ultrasonic field

    表  1  不同电极数量时接收到的声压

    Table  1.   Received sound pressure with different electrode quantities

    电极个数 接收到的声压值/Pa
    0 3 180
    16 2 130
    30 79
    下载: 导出CSV

    表  2  不同网格尺寸时接收到的声压

    Table  2.   Received sound pressure with different mesh sizes

    网格尺寸/mm 声压/Pa
    λ/3 10 561.062 93
    λ/4 10 557.267 59
    λ/5 10 555.664 34
    λ/6 10 554.588 87
    λ/10 10 554.581 65
    λ/15 10 554.690 08
    下载: 导出CSV

    表  3  不同网格尺寸时边界电压

    Table  3.   Boundary voltage with different mesh sizes

    编号 边界电压/V
    粗化 标准 细化
    1 1.004 99 1.004 99 1.004 99
    2 0.509 37 0.509 37 0.509 37
    3 0.323 59 0.323 59 0.323 59
    4 0.237 78 0.237 78 0.237 78
    5 0.194 76 0.194 76 0.194 76
    6 0.174 63 0.174 63 0.174 63
    7 0.169 52 0.169 52 0.169 52
    8 0.177 88 0.177 88 0.177 88
    9 0.202 52 0.202 52 0.202 52
    10 0.253 13 0.253 13 0.253 13
    11 0.354 68 0.354 68 0.354 68
    12 0.580 70 0.580 70 0.580 70
    13 1.214 00 1.214 00 1.214 00
    下载: 导出CSV
  • [1] 谭超, 董峰.过程层析成像与多相流测量应用[J].仪器仪表用户, 2010(1):3-6. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYQ201001003.htm

    TAN C, DONG F.An overview on process tomography and its applications[J].Electronic Instrumentation Customer, 2010(1):3-6(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYQ201001003.htm
    [2] KARHUNEN K, SEPPANEN A, LEHIKOINEN A, et al.Electrical resistance tomography imaging of concrete[J].Cement and Concrete Research, 2010, 40(1):137-145. doi: 10.1016/j.cemconres.2009.08.023
    [3] DONG F, TAN C, LIU J W, et al.Development of single drive electrode electrical resistance tomography system[J].IEEE Transactions on Instrumentation and Measurement, 2006, 55(4):1208-1214. doi: 10.1109/TIM.2006.877751
    [4] LI Y, YANG W Q.Measurement of multi-phase distribution using an integrated dual-modality sensor[C]//2009 IEEE International Workshop on Imaging Systems and Techniques.Piscataway, NJ:IEEE Press, 2009:335-339.
    [5] WANG Q, WANG H X, CUI Z Q, et al.Fast reconstruction of electrical resistance tomography (ERT) images based on the projected CG method[J].Flow Measurement and Instrumentation, 2012, 27:37-46. doi: 10.1016/j.flowmeasinst.2012.03.009
    [6] RADOVAN J, IGOR P, NICOLE R, et al.Sound-speed image reconstruction in sparse-aperture 3-d ultrasound transmission tomography[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2012, 59(2):254-264. doi: 10.1109/TUFFC.2012.2185
    [7] SCHLABERG H I, YANG M, HOYLE B S.Ultrasound reflection tomography for industrial processes[J].Ultrasonics, 1998, 36(1-5):297-303. doi: 10.1016/S0041-624X(97)00053-X
    [8] SUPARDAN M D, MASUDA Y, MAEZAWA A, et al.The investigation of gas holdup distribution in a two-phase bubble column using ultrasonic computed tomography[J].Chemical Engineering Journal, 2007, 130(2-3):125-133. doi: 10.1016/j.cej.2006.08.035
    [9] YUNUS F R M, AZLAN N A N, AYOB N M N, et al.Simulation study of bubble detection using dual-mode electrical resistance and ultrasonic transmission tomography for two-phase liquid and gas[J].Sensors and Transducers, 2013, 150(3):97-105. https://www.researchgate.net/publication/286702268_Simulation_study_of_bubble_detection_using_dual-mode_electrical_resistance_and_ultrasonic_transmission_tomography_for_two-phase_liquid_and_gas
    [10] RAHIMAN M H F, RAHIM R A, RAHIM H A, et al.An investigation on chemical bubble column using ultrasonic tomography for imaging of gas profiles[J].Sensors and Actuators B:Chemical, 2014, 202(10):46-52. https://www.researchgate.net/profile/Mohd_Hafiz_Fazalul_Rahiman/publication/262806288_An_investigation_on_chemical_bubble_column_using_ultrasonic_tomography_for_imaging_of_gas_profiles/links/55bc711608aed621de0dcbda.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [11] AYOB N M N, RAHIMAN M H F, ZAKARIA Z, et al.Detection of small gas bubble using ultrasonic transmission-mode tomography system[C]//Industrial Electronics and Applications.Piscataway, NJ:IEEE Press, 2010:165-170.
    [12] QIU C, HOYLE B S, PODD F J W.Engineering and application of a dual-modality process tomography system[J].Flow Measurement and Instrumentation, 2007, 18(5-6):247-254. doi: 10.1016/j.flowmeasinst.2007.07.008
    [13] HOYLE B S, JIA X, PODD F J W, et al.Design and application of a multi-modal process tomography system[J].Measurement Science and Technology, 2001, 12(8):1157-1165. doi: 10.1088/0957-0233/12/8/324
    [14] RAHIM R A, RAHIMAN M H F, ZAIN R M, et al.Image fusion of dual-modal tomography (electrical capacitance and optical) for solid/gas flow[J].International Journal of Innovative Computing Information and Control, 2011, 7(9):5119-5132.
    [15] SUN J T, YANG W Q.A dual-modality electrical tomography sensor for measurement of gas-oil-water stratified flows[J].Measurement, 2015, 66:150-160. doi: 10.1016/j.measurement.2015.01.032
    [16] YUNUS F R M, RAHIM R A, AW S R, et al.Simulation study of electrode size in air-bubble detection for dual-mode integrated electrical resistance and ultrasonic transmission tomography[J].Powder Technology, 2014, 256(2):224-232. https://www.researchgate.net/publication/260483503_Simulation_study_of_electrode_size_in_air-bubble_detection_for_dual-mode_integrated_electrical_resistance_and_ultrasonic_transmission_tomography
    [17] TENIOU S, MERIBOUT M.A multimodal image reconstruction method using ultrasonic waves and electrical resistance tomography[J].IEEE Transactions on Image Processing, 2015, 24(11):3512-3521. doi: 10.1109/TIP.2015.2445575
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  815
  • HTML全文浏览量:  86
  • PDF下载量:  513
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-29
  • 录用日期:  2016-06-12
  • 网络出版日期:  2017-02-20

目录

    /

    返回文章
    返回
    常见问答