留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滑模观测器的机翼颤振主动抑制设计

宋晨 王诗其 杨超

宋晨, 王诗其, 杨超等 . 基于滑模观测器的机翼颤振主动抑制设计[J]. 北京航空航天大学学报, 2017, 43(6): 1098-1104. doi: 10.13700/j.bh.1001-5965.2016.0453
引用本文: 宋晨, 王诗其, 杨超等 . 基于滑模观测器的机翼颤振主动抑制设计[J]. 北京航空航天大学学报, 2017, 43(6): 1098-1104. doi: 10.13700/j.bh.1001-5965.2016.0453
SONG Chen, WANG Shiqi, YANG Chaoet al. Active flutter suppression design of a wing based on sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1098-1104. doi: 10.13700/j.bh.1001-5965.2016.0453(in Chinese)
Citation: SONG Chen, WANG Shiqi, YANG Chaoet al. Active flutter suppression design of a wing based on sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1098-1104. doi: 10.13700/j.bh.1001-5965.2016.0453(in Chinese)

基于滑模观测器的机翼颤振主动抑制设计

doi: 10.13700/j.bh.1001-5965.2016.0453
基金项目: 

国家自然科学基金 11402013

中央高校基本科研业务费专项资金 YWF-14-WRJS-004

详细信息
    作者简介:

    宋晨, 男, 博士, 讲师。主要研究方向:气动弹性与主动控制、结构强度

    通讯作者:

    宋晨, E-mail:songchen@buaa.edu.cn

  • 中图分类号: V215.3

Active flutter suppression design of a wing based on sliding mode observer

Funds: 

National Natural Science Foundation of China 11402013

the Fundamental Research Funds for the Central Universities YWF-14-WRJS-004

More Information
  • 摘要:

    颤振主动抑制(AFS)是国际上普遍推崇的颤振问题解决方案,对现代飞行器设计具有重要意义。基于国际上滑模观测器的二维机翼AFS应用,以双后缘控制面真实机翼模型为对象,发展一种低阶滑模观测器的三维机翼AFS设计方法。该观测器性能优越、特点鲜明,但传统的设计流程繁琐,限制了其在高阶模型对象上的使用。本文借助线性二次型高斯(LQG)方法中的最优滤波器增益矩阵,提出一种简化的滑模观测器设计流程。结合气动弹性物理背景,使本文方法理论上能够应用于实践。算例对比分析结果表明,本文方法比LQG方法具有更好的抵抗噪声能力。

     

  • 图 1  某机翼风洞试验模型结构示意图

    Figure 1.  Schematic of wind-tunnel test model of a wing

    图 2  LQG方法的估计器实现框图

    Figure 2.  Realization block diagram of estimator of LQG method

    图 3  滑模观测器方法的估计器实现框图(半输出反馈)

    Figure 3.  Realization block diagram of estimator of sliding mode observer (half output feedback)

    图 4  舵偏指令的三角脉冲激励

    Figure 4.  Flap deflection command excited by delta impulse

    图 5  无控状态开环系统输出响应

    Figure 5.  Open-loop output responses of system without control

    图 6  有控状态闭环系统输出响应(1#传感器)

    Figure 6.  Closed-loop output responses of system with control (Sensor No.1)

    图 7  有控状态的舵偏指令时间历程

    Figure 7.  Time histories of flap deflection command with control

    图 8  输入指令有噪声干扰时的闭环响应(1#传感器)

    Figure 8.  Closed-loop responses of system with noise disturbance in input commands (Sensor No.1)

    图 9  输入指令有噪声干扰时的舵偏指令时间历程(舵面Ⅱ)

    Figure 9.  Time histories of flap deflection command with noise disturbance in input commands (FlapⅡ)

    图 10  各阶状态变量对滑模观测器输入指令贡献量

    Figure 10.  Contributions of different-order state variables to input commands of sliding mode observer

    图 11  滑模观测器方法的全输出反馈实现

    Figure 11.  Full output feedback realization of sliding mode observer

    图 12  全输出反馈控制下的输入、输出均有噪声时域响应对比(1#传感器)

    Figure 12.  Comparison of time domain responses of system with noise disturbance in both inputs and outputs under full output feedback control (Sensor No.1)

    表  1  动力学模型模态列表(翼根固支约束)

    Table  1.   List of vibration modes of dynamic model (cantilever restriction)

    序号 模态名称 模态频率/Hz 试验值/Hz
    1 一阶弯曲 1.61
    2 二阶弯曲 6.21 6.19
    3 一阶扭转 14.75 14.85
    4 三阶弯曲 16.48 16.65
    5 四阶弯曲 27.60 27.91
    6 二阶扭转 33.71
    下载: 导出CSV
  • [1] THOMPSON G O, KASS G J.Active flutter suppression-An emerging technology[J].Journal of Aircraft, 1972, 9(3):230-235. doi: 10.2514/3.58962
    [2] MUKHOPADHYAY V.Flutter suppression digital control law design and testing for the AFW wind-tunnel model:AIAA-1992-2095[R].Reston:AIAA, 1992.
    [3] NISSIM E.Reduction of aerodynamic augmented states in active flutter suppression systems[J].Journal of Aircraft, 1991, 28(1):82-93. doi: 10.2514/3.45995
    [4] MAHESH J K, STONE C R, GARRARD W L, et al.Control law synthesis for flutter suppression using linear quadratic Gaussian theory[J].Journal of Guidance, Control, and Dynamics, 1981, 4(4):415-422. doi: 10.2514/3.56094
    [5] 吴志刚, 杨超.主动气动弹性机的颤振主动抑制与阵风减缓研究[J].机械强度, 2003, 25(1):32-35. http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200301008.htm

    WU Z G, YANG C.Investigation on active flutter suppression and gust alleviation for an active aeroelastic wing[J].Journal of Mechanical Strength, 2003, 25(1):32-35(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200301008.htm
    [6] NA S, LIBRESCU L, MARZOCCA P, et al.Aeroelastic response of flapped wing systems using robust estimation methodology:AIAA-2004-1673[R].Reston:AIAA, 2004.
    [7] KIM K W, LEE B, NA S, et al.Comparative analysis of control performances applied to a 3-DOFs nonlinear supersonic lifting surface:AIAA-2008-1724[R].Reston:AIAA, 2008.
    [8] LEE K W, SINGH S N.Robust higher-order sliding-mode finite-time control of aeroelastic systems[J].Journal of Guidance, Control, and Dynamics, 2014, 37(5):1664-1670. doi: 10.2514/1.G000456
    [9] ZHANG H Y, SHI Z K.Variable structure control of catastrophic course in airdropping heavy cargo[J].Chinese Journal of Aeronautics, 2009, 22(5):520-527. doi: 10.1016/S1000-9361(08)60135-1
    [10] 宋晨, 吴志刚, 杨超.二元机翼滑模变结构控制颤振主动抑制[J].北京航空航天大学学报, 2010, 36(11):1400-1403. http://bhxb.buaa.edu.cn/CN/abstract/abstract11828.shtml

    SONG C, WU Z G, YANG C.Sliding mode variable structure control of flutter suppression for a two-dimensional wing[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1400-1403(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract11828.shtml
    [11] YANG C, SONG C, WU Z G, et al.Application of output feedback sliding mode control to active flutter suppression of two-dimensional airfoil[J].Science China:Technological Sciences, 2010, 53(5):1338-1348. doi: 10.1007/s11431-010-0099-z
    [12] SONG C, WU Z G, YANG C.Active flutter suppression of a two-dimensional airfoil based on sliding mode control method[C]//The 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, Harbin, 2010.
    [13] EDWARDS C, SPURGEON S K.Sliding mode control:Theory and applications[M].London:Taylor & Francis, 1998.
    [14] 杨超, 吴志刚, 万志强, 等.飞行器气动弹性原理[M].北京:北京航空航天大学出版社, 2011.

    YANG C, WU Z G, WAN Z Q, et al.Principles of aeroelasticity for air vehicles[M].Beijing:Beihang University Press, 2011 (in Chinese).
    [15] YURKOVICH R.Status of unsteady aerodynamic prediction for flutter of high-performance aircraft[J].Journal of Aircraft, 2003, 40(5):832-842. doi: 10.2514/2.6874
    [16] 陈磊, 吴志刚, 杨超, 等.多控制面机翼阵风减缓主动控制与风洞试验验证[J].航空学报, 2009, 30(12):2250-2256. doi: 10.3321/j.issn:1000-6893.2009.12.002

    CHEN L, WU Z G, YANG C, et al.Active control and wind tunnel test verification of multi-control surface wing for gust alleviation[J].Acta Aeronoutica et Astronautica Sinica, 2009, 30(12):2250-2256(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.002
    [17] 宋晨, 杨超, 吴志刚.3种气动弹性状态空间建模方法的对比[J].航空学报, 2007, 28(Sup.):S81-S86. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2007S1015.htm

    SONG C, YANG C, WU Z G.Comparison of three aeroelastic state-space modeling methods[J].Acta Aeronoutica et Astronautica Sinica, 2007, 28(Sup.):S81-S86(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2007S1015.htm
    [18] 吴敏, 桂卫华, 何勇.现代鲁棒控制[M].2版.长沙:中南大学出版社, 2006.

    WU M, GUI W H, HE Y.Modern robust control[M].2nd ed.Changsha:Central South University Press, 2006(in Chinese).
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  882
  • HTML全文浏览量:  66
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 录用日期:  2016-06-20
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答