留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双模冗余的胚胎电子细胞阵列在线故障检测

李丹阳 蔡金燕 孟亚峰 朱赛

李丹阳, 蔡金燕, 孟亚峰, 等 . 基于双模冗余的胚胎电子细胞阵列在线故障检测[J]. 北京航空航天大学学报, 2017, 43(6): 1112-1122. doi: 10.13700/j.bh.1001-5965.2016.0745
引用本文: 李丹阳, 蔡金燕, 孟亚峰, 等 . 基于双模冗余的胚胎电子细胞阵列在线故障检测[J]. 北京航空航天大学学报, 2017, 43(6): 1112-1122. doi: 10.13700/j.bh.1001-5965.2016.0745
LI Danyang, CAI Jinyan, MENG Yafeng, et al. Online fault detection based on dual modular redundancy for embryonics array[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1112-1122. doi: 10.13700/j.bh.1001-5965.2016.0745(in Chinese)
Citation: LI Danyang, CAI Jinyan, MENG Yafeng, et al. Online fault detection based on dual modular redundancy for embryonics array[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1112-1122. doi: 10.13700/j.bh.1001-5965.2016.0745(in Chinese)

基于双模冗余的胚胎电子细胞阵列在线故障检测

doi: 10.13700/j.bh.1001-5965.2016.0745
基金项目: 

国家自然科学基金 61372039

国家自然科学基金 61601495

详细信息
    作者简介:

    李丹阳, 男, 博士研究生。主要研究方向:电子装备故障检测与自修复

    蔡金燕, 女, 教授, 博士生导师。主要研究方向:电子系统可靠性分析与设计、电子系统仿生自修复设计等

    孟亚峰, 男, 副教授, 硕士生导师。主要研究方向:电子系统可靠性分析与设计、电子系统仿生自修复设计等

    朱赛, 男, 博士, 讲师。主要研究方向:仿生电子系统设计及电子系统自修复设计

    通讯作者:

    孟亚峰, E-mail:myfrad@163.com

  • 中图分类号: TP302.8

Online fault detection based on dual modular redundancy for embryonics array

Funds: 

National Natural Science Foundation of China 61372039

National Natural Science Foundation of China 61601495

More Information
  • 摘要:

    针对胚胎电子细胞阵列在线故障检测设计困难、检测率低、检测率难以准确计算等问题,提出了一种基于双模冗余的在线故障检测方法和一种基于电路等价性验证的故障检测率分析方法。设计了一种适用于查找表型功能单元的新型检测器,并开发了自动化设计程序。针对单固定型故障,将电路转变为待验证电路,再通过故障注入和等价性验证,可以快速精确地计算电路的故障检测率。仿真实验选取16个不同规模的标准电路,分别映射在胚胎电子细胞阵列中,分析了双模冗余后面积、延时变化情况和双模冗余的故障检测率。仿真结果给出了较为详细的面积消耗、电路延时和故障检测率等数据,并验证了本文方法具有很高的故障检测率。

     

  • 图 1  双模冗余检测结构

    Figure 1.  DMR checking structure

    图 2  胚胎电子细胞阵列中的双模冗余

    Figure 2.  DMR mapped on embryonics array

    图 3  检测器结构

    Figure 3.  Structure of checker

    图 4  双模冗余设计方法

    Figure 4.  Design methodology for DMR

    图 5  故障检测率计算流程

    Figure 5.  Calculation process of fault detection rate

    图 6  待测双模冗余电路

    Figure 6.  DMR circuit to be detected

    图 7  等价性验证电路

    Figure 7.  Equivalence checking circuit

    图 8  附加检测器

    Figure 8.  Additional checker

    图 9  基于双模冗余检测的附加检测电路

    Figure 9.  Additional checker circuit based on DMR detection

    图 10  双模冗余电路的面积增长率

    Figure 10.  Area increase rate of DMR circuits

    图 11  双模冗余电路的延时增长率

    Figure 11.  Delay increase rate of DMR circuits

    表  1  故障检测方法比较

    Table  1.   Comparison of fault detection methods

    检测方法 故障检测率 检测速度 资源消耗 适用范围 设计难度
    DMR 实时 较大 无限制
    TMR 实时 无限制
    EDC 中等 实时 较小 一般用于组合电路 中等
    LD 较快 中等 经特殊设计的电子阵列
    AIS 较高 较快 小规模电路 中等
    Roving STARs 可重构电子阵列
    下载: 导出CSV

    表  2  电路规模、面积增长率和延时增长率

    Table  2.   Circuit scale, area increase rate and delay increase rate

    电路 电路规模 触发器个数 输出个数 输入个数 AIR DIR
    c8 7×7 18 28 2.423 8 1.374 1
    dk14 7×7 3 5 4 2.201 1 1.019 2
    c499 9×9 32 41 2.584 3 1.347 2
    s344 9×9 15 11 10 2.113 5 1.075 9
    term1 10×10 10 34 2.148 4 1.202 4
    s641 10×10 19 23 36 2.364 1 1.368 3
    apex7 11×11 49 37 2.239 0 1.318 4
    s820 11×11 5 19 19 2.343 0 1.190 1
    c432 12×12 7 36 2.041 8 1.111 8
    ex1 12×12 5 19 10 2.188 1 1.991 0
    c880 14×14 26 60 2.258 8 1.470 6
    s1 14×14 5 6 9 2.013 1 0.973 2
    rot 18×18 135 107 2.482 3 1.353 0
    s1494 18×18 6 19 9 2.113 2 1.198 2
    c3540 21×21 22 50 2.031 0 1.314 5
    scf 21×21 7 56 28 2.287 6 1.266 7
    下载: 导出CSV

    表  3  标准电路的故障检测率

    Table  3.   Fault detection rate of some benchmark circuits

    电路 功能电路 检测电路
    LUT FDR 触发器FDR LUT ST 触发器ST
    s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1
    c8 100 100 100 100
    c432 100 100 100 100
    c499 100 100 100 100
    term1 100 100 100 99.0
    apex7 100 100 97.8 100
    c880 100 100 100 100
    rot 100 100 99.3 99.3
    c3540 100 100 100 100
    dk14 100 100 100 100 100 100 100 100
    s344 100 100 100 100 98.7 98.7 100 100
    s641 100 100 100 100 87.5 96.4 78.9 100
    s820 100 100 100 100 100 100 100 100
    ex1 100 100 100 100 100 100 100 100
    s1 100 100 100 100 81.6 99.5 100 100
    s1494 100 100 100 100 100 100 100 100
    scf 100 100 100 100 99.2 100 100 100
    下载: 导出CSV
  • [1] MANGE D, SANCHEZ E, STAUFFER A, et al.Embryonics:A new methodology for designing field-programmable gate arrays with self-repair and self-replicating[J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1998, 6(3):387-399. doi: 10.1109/92.711310
    [2] KIM S, CHU H, YANG I, et al.A hierarchical self-repairing architecture for fast fault recovery of digital systems inspired from paralogous gene regulatory circuits[J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2012, 20(12):2315-2328. doi: 10.1109/TVLSI.2011.2176544
    [3] PRODAN L, UDRESCU M, VLADUTIU M, et al.Self-repairing embryonic memory arrays[C]//Proceedings 2004 NASA/DoD Conference on Evolvable Hardware.Piscataway, NJ:IEEE Press, 2004:130-137.
    [4] YANG S S, WANG Y R.A new self-repairing digital circuit based on embryonic cellular array[C]//Proceedings 2006 8th International Conference on Solid-State and Integrated Circuit Technology.Piscataway, NJ:IEEE Press, 2006:1997-1999.
    [5] BRADLEY D, CESAR O S, TYRRELL A.Embryonics+Immunotronics:A bio-inspired approach to fault tolerance[C]//Proceedings of the 2nd NASA/DoD Workshop on Evolvable Hardware.Piscataway, NJ:IEEE Press, 2000:215-223.
    [6] 郝国锋, 王友仁, 张砦, 等.可重构硬件芯片级故障定位与自主修复方法[J].电子学报, 2012, 40(2):384-388. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201202028.htm

    HAO G F, WANG Y R, ZHANG Z, et al.In-chip fault localization and self-repairing method for reconfigurable hardware[J].Chinese Journal of Electrics, 2012, 40(2):384-388(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201202028.htm
    [7] ZHANG X, DRAGFFY G, PIPE A G, et al.Artificial innate immune system:An instant defence layer of embryonics[J].Lecture Notes in Computer Science, 2004, 3239(1):302-315. http://www.citeulike.org/user/jasonb/article/2704946
    [8] CANHAM R O, TYRRELL A M.A hardware artificial immune system and embryonic array for fault tolerant systems[J].Genetic Programming and Evolvable Machines, 2003, 4(4):359-382. doi: 10.1023/A:1026143128448
    [9] CANHAM R O, TYRRELL A M.An embryonic array with improved efficiency and fault tolerance[C]//Proceedings 2003 NASA/DoD Conference on Evolvable Hardware.Piscataway, NJ:IEEE Press, 2003:265-272.
    [10] SAMIE M, DRAGFFY G, TYRRELL A M.Novel bio-inspired approach for fault-tolerant VLSI systems[J].IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21(10):1878-1891. doi: 10.1109/TVLSI.2012.2220793
    [11] BREMNER P, LIU Y, SAMIE M, et al.SABRE:A bio-inspired fault-tolerant electronic architecture[J].Bioinspiration & Biomimetics, 2013, 8(1):1-16. https://www.researchgate.net/publication/234098022_SABRE_A_bio-inspired_fault-tolerant_electronic_architecture
    [12] UPEGUI A, THOMA Y, MORENO J M, et al.The perplexus bio-inspired reconfigurable circuit[C]//Proceedings 2007 NASA/ESA Conference on Adaptive Hardware and Systems.Piscataway, NJ:IEEE Press, 2007:600-605.
    [13] ABRAMOVICI M, EMMERT J M, STROUD C E.Roving STARs:An integrated approach to on-line testing, diagnosis, and fault tolerance for fpgas in adaptive computing systems[C]//Proceedings the 3rd NASA/DoD Workshop on Evolvable Hardware.Piscataway, NJ:IEEE Press, 2001:73-92.
    [14] BOLCHINI C, SALICE F, SCIUTO D.Designing self-checking FPGAs through error detection codes[C]//Proceedings 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems.Piscataway, NJ:IEEE Press, 2002:60-68.
    [15] STOTT E, SEDCOLE P, CHEUNG P Y K.Fault tolerant methods for reliability in FPGAs[C]//International Conference on Field Programmable Logic and Applications.Piscataway, NJ:IEEE Press, 2008:415-420.
    [16] BRAYTON R, MISHCHENKO A.ABC:An academic industrial-strength verification tool[J].Lecture Notes in Computer Science, 2010, 6174(1):24-40. http://www.springerlink.com/content/r03371760p68202u
    [17] MISHCHENKO A, CHATTERJEE S, BRAYTON R.DAG-aware AIG rewriting:A fresh look at combinational logic synthesis[C]//Proceedings 2006 Design Automation Conference.Piscataway, NJ:IEEE Press, 2006:532-535.
    [18] LUU J, GOEDERS J, WAINBERG M, et al.VTR7.0:Next generation architecture and cad system for FPGAS[J].ACM Transactions on Reconfigurable Technology and Systems, 2014, 7(2):6. https://www.researchgate.net/profile/Kenneth_Kent/publication/277679343_VTR_70/links/55758df508ae7521586ac4dc/VTR-70.pdf
    [19] MISHCHENKO A, CHATTERJEE S, BRAYTON R, et al.Improvements to combinational equivalence checking[C]//2006 IEEE/ACM International Conference on Computer Aided Design.Piscataway, NJ:IEEE Press, 2006:836-843.
    [20] MISHCHENKO A, CASE M, BRAYTON R, et al.Scalable and scalably-verifiable sequential synthesis[C]//2008 IEEE/ACM International Conference on Computer Aided Design.Piscataway, NJ:IEEE Press, 2008:234-241.
    [21] 朱赛, 蔡金燕, 孟亚峰.一种LUT型胚胎电子阵列的功能分化方法[J].电子学报, 2015, 43(12):2440-2448. doi: 10.3969/j.issn.0372-2112.2015.12.014

    ZHU S, CAI J Y, MENG Y F.A functional differentiation method for LUT-based embryonics array[J].Chinese Journal of Electrics, 2015, 43(12):2440-2448(in Chinese). doi: 10.3969/j.issn.0372-2112.2015.12.014
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  915
  • HTML全文浏览量:  80
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-19
  • 录用日期:  2016-12-23
  • 网络出版日期:  2017-06-20

目录

    /

    返回文章
    返回
    常见问答