Mechanical and dynamic characteristics of bearing with looseness on high-speed flexible rotor
-
摘要:
针对高速柔性转子支承松动的结构特征、力学特征以及多支点转子系统动力学设计的需要,研究了转子支承结构松动引起支承刚度非连续变化的产生机理,建立了支承松动转子系统动力学模型,分析了支承松动转子系统存在混沌运动的条件,即当转子动力特性对支承刚度变化敏感时,受支承刚度阶跃影响,支承松动转子系统会产生混沌运动。根据多支点转子系统动力学特性与支承结构位置、刚度的相关性,采用优化支承位置和支承刚度的方法,使转子动力特性对支承刚度非连续变化不敏感,为多支点高速柔性转子系统的动力学优化设计提供了设计途径。
Abstract:Based on analysis of the structural and mechanical characteristics of the bearing with looseness on high-speed flexible rotor and the demand of dynamic optimal design for multi-supported flexible rotor, the mechanism of non-straight change of stiffness of supporting structure caused by looseness on rotor-bearing system was researched. Then a dynamic model of rotor-bearing system with looseness was developed. The generation conditions of chaos were analyzed. According to the analysis, the rotor will produce chaotic motion by the impact of the step change in stiffness when the dynamics of the rotor is sensitive to the stiffness of supporting structure. Based on the relationship of dynamics of the rotor and position and stiffness of supporting structure, the optimization design of the position and stiffness of supporting structure can control the sensitivity of rotor dynamic characteristics to the stiffness of the support, which can provide design method for dynamics optimization design for multi-supported high-speed flexible rotor.
-
表 1 高速柔性转子各支点支承刚度设计值
Table 1. Designed bearing stiffness value of supporting structures of high-speed flexible rotor
支点编号 1号(滚珠) 2号(滚棒) 3号(滚棒) 4号(滚棒) 支承刚度/
(106N·m-1)5.0 1.4 3.5 2.8 -
[1] KIM T C, ROOK T E, SINGH R.Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity[J].Journal of Sound & Vibration, 2003, 263(3):665-678. http://www.sciencedirect.com/science/article/pii/S0022460X02014694 [2] KARPENKO E V, WIERCIGROCH M, PAVLOVSKAIA E E, et al.Piecewise approximate analytical solutions for a Jeffcott rotor with a snubber ring[J].International Journal of Mechanical Sciences, 2002, 44(3):475-488. doi: 10.1016/S0020-7403(01)00108-4 [3] JI Z, ZU J W.Method of multiple scales for vibration analysis of rotor shaft systems with non-linear bearing pedestal model[J].Journal of Sound & Vibration, 1998, 218(218):293-305. http://www.sciencedirect.com/science/article/pii/S0022460X98918351 [4] LEE A C, KANG Y, LIU S L.Steady-state analysis of a rotor mounted on nonlinear bearings by the transfer matrix method[J].International Journal of Mechanical Sciences, 1993, 35(6):479-490. doi: 10.1016/0020-7403(93)90037-U [5] 闫政涛, 翁雪涛, 朱石坚, 等.刚度分段线性系统的自由振动解析研究[J].噪声与振动控制, 2010, 30(6):18-22. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201006006.htmYAN Z T, WENG X T, ZHU S J, et al.Analytical solution of free vibration of systems with piecewise linear stiffness[J].Noise and Vibration Control, 2010, 30(6):18-22(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201006006.htm [6] TIWARI M, GUPTA K, PRAKASH O.Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor[J].Journal of Sound & Vibration, 2000, 238(5):723-756. http://www.sciencedirect.com/science/article/pii/S0022460X99931097 [7] EHRICH F F.High order subharmonic response of high speed rotors in bearing clearance[J].Journal of Vibration & Acoustics, 1988, 110(1):9-16. [8] EHRICH F F.Subharmonic virbration of rotors in bearing clearance[J].Journal of Engineering for Industry, 1967, 89(3):381-389. doi: 10.1115/1.3610057 [9] GOLDMAN P, MUSZYNSKA A.Chaotic behavior of rotor-stator systems with rubs[J].Journal Engineering for Gas Turbines and Power, 1994, 116(3):692-701. doi: 10.1115/1.2906875 [10] GOLDMAN P, MUSZYNSKA A.Dynamic effects in mechanical structures with gap and impacting:Order and chaos[J].Journal of Vibration and Acoustics, 1994, 116(3):541-547. [11] MUSZYNSKA A, GOLDMAN P.Chaotic response of unbalanced rotor/bearing/stator systems with looseness or rubs[J].Chaos, Solitons & Fractals, 1995, 5(9):1683-1704. http://www.sciencedirect.com/science/article/pii/096007799400171L [12] MEVEL B, GUYADER J L.Experiments on routes to chaos in ball bearings[J].Journal of Sound & Vibration, 2008, 318(3):549-564. http://www.sciencedirect.com/science/article/pii/S0022460X08003660 [13] 李振平, 罗跃纲, 姚红良, 等.转子系统支承松动的非线性动力学及故障特征[J].东北大学学报(自然科学版), 2002, 23(11):1048-1051. doi: 10.3321/j.issn:1005-3026.2002.11.008LI Z P, LUO Y G, YAO H L, et al.Dynamics and fault characteristics of rotor-bearing system with pedestal looseness[J].Journal of Northeastern University (Natural Science), 2002, 23(11):1048-1051(in Chinese). doi: 10.3321/j.issn:1005-3026.2002.11.008 [14] 姚红良, 刘长利, 张晓伟, 等.支承松动故障转子系统共振区动态特性分析[J].东北大学学报(自然科学版), 2003, 24(8):798-801. http://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200308023.htmYAO H L, LIU C L, ZHANG X W, et al.Dynamics of pedestal looseness rotor system near the critical speed region[J].Journal of Northeastern University (Natural Science), 2003, 24(8):798-801(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200308023.htm [15] YAMAMOTO T, ISHIDA Y, IKEDA T.Summed-and-differential harmonic oscillations of an unsymmetrical shaft[J].Bulletin of JSME, 1981, 24(187):183-191. doi: 10.1299/jsme1958.24.183