留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于跟踪微分器的高超声速飞行器减步控制

张伸 王青 董朝阳 侯砚泽

张伸, 王青, 董朝阳, 等 . 基于跟踪微分器的高超声速飞行器减步控制[J]. 北京航空航天大学学报, 2017, 43(10): 2054-2062. doi: 10.13700/j.bh.1001-5965.2016.0791
引用本文: 张伸, 王青, 董朝阳, 等 . 基于跟踪微分器的高超声速飞行器减步控制[J]. 北京航空航天大学学报, 2017, 43(10): 2054-2062. doi: 10.13700/j.bh.1001-5965.2016.0791
ZHANG Shen, WANG Qing, DONG Chaoyang, et al. Reduced step control of hypersonic vehicle based on tracking differentiator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2054-2062. doi: 10.13700/j.bh.1001-5965.2016.0791(in Chinese)
Citation: ZHANG Shen, WANG Qing, DONG Chaoyang, et al. Reduced step control of hypersonic vehicle based on tracking differentiator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2054-2062. doi: 10.13700/j.bh.1001-5965.2016.0791(in Chinese)

基于跟踪微分器的高超声速飞行器减步控制

doi: 10.13700/j.bh.1001-5965.2016.0791
基金项目: 

国家自然科学基金 61374012

国家自然科学基金 61403028

详细信息
    作者简介:

    张伸  男, 博士研究生。主要研究方向:高超声速飞行器制导与控制、切换控制

    王青  女, 教授, 博士生导师。主要研究方向:导航制导与控制、智能控制、鲁棒控制、切换控制

    通讯作者:

    王青, E-mail: wangqing@buaa.edu.cn

  • 中图分类号: V249.1;TP273

Reduced step control of hypersonic vehicle based on tracking differentiator

Funds: 

National Natural Science Foundation of China 61374012

National Natural Science Foundation of China 61403028

More Information
  • 摘要:

    针对高超声速飞行器强非线性,强耦合与高度不确定性的特点,提出一种基于高阶跟踪微分器的减步控制方案。将高超声速飞行器纵向模型表达为严反馈形式。在反步法设计框架中,引入跟踪微分器,利用其对给定信号任意阶导数精确估计的能力,计算第1步设计中产生的虚拟控制量的导数,并直接获得第2步实际控制量,从而将设计步骤从3步减少为2步。且在每步设计中将参数不确定性与外部扰动建模为等效干扰,设计扩张状态观测器获得等效干扰估计值,继而在控制器设计中进行补偿。利用Lyapunov方法证明闭环系统稳定性。仿真结果验证了所提控制方案对不确定及干扰的抑制作用,且跟踪精度优于传统动态面方法。

     

  • 图 1  减步控制方案弹道倾角跟踪曲线

    Figure 1.  Flight path angle tracking curves with reduced step control scheme

    图 2  减步控制方案虚拟控制指令曲线

    Figure 2.  Virtual control signal curves with reduced step control scheme

    图 3  减步控制方案俯仰角与俯仰角速率跟踪曲线

    Figure 3.  Pitch angle and pitch angle rate tracking curves with reduced step control scheme

    图 4  等效干扰观测曲线

    Figure 4.  Observed curves of equivalent disturbances

    图 5  速度跟踪曲线

    Figure 5.  Velocity tracking curves

    图 6  弹道倾角跟踪对比

    Figure 6.  Comparison of flight path angle tracking

    图 7  弹道倾角、俯仰角与俯仰角速率跟踪误差对比

    Figure 7.  Comparison of flight path angle, pitch angle and pitch angle rate tracking error

    图 8  升降舵偏角对比

    Figure 8.  Comparison of elevator deflection

  • [1] RODRIGUEZ A A, DICKESON J J, CIFDALOZ O, et al. Modeling and control of scramjet-powered hypersonic vehicles:Challenges, trends, & tradeoffs:AIAA-2008-6793[R].Reston:AIAA, 2008.
    [2] LAMORTE N, FRIEDMANN P P, DALLE D J, et al.Uncertainty propagation in integrated airframe-propulsion system analysis for hypersonic vehicle[J].Journal of Propulsion and Power, 2015, 31(1):54-68. doi: 10.2514/1.B35122
    [3] DICKESON J J, RODRIGUEZ A A, SRIDHARAN S, et al.Control-relevant modeling, analysis, and design for scramjet-powered hypersonic vehicle:AIAA-2009-7287[R].Reston:AIAA, 2009.
    [4] KARLGARD C D, MARTIN J G, TARTABINI P V, et al.Hyper-X Mach 10 trajectory reconstruction:AIAA-2005-5920[R].Reston:AIAA, 2005.
    [5] MORELLI E A.Flight test experiment design for characterizing stability and control of hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(3):949-959. doi: 10.2514/1.37092
    [6] 孙长银, 穆朝絮, 余瑶.近空间高超声速飞行器控制的几个科学问题研究[J].自动化学报, 2013, 39(11):1901-1913. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015

    SUN C Y, MU Z X, YU Y.Some control problem for near space hypersonic vehicles[J].Acta Automatica Sinica, 2013, 39(11):1901-1913(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015
    [7] WANG Q, STENGEL R F.Robust nonlinear control of a hypersonic aircraft[J].Journal of Guidance, Control, and Dynamics, 2000, 23(4):577-585. doi: 10.2514/2.4580
    [8] FIORENTINI L, SERRANI A, BOLENDER M A, et al.Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J].Journal of Guidance, Control, and Dynamics, 2009, 32(2):401-416. doi: 10.1007%2Fs11771-014-1924-5.pdf
    [9] SUN H B, LI S H, SUN C Y.Finite time integral sliding model control of hypersonic vehicles[J].Nonlinear Dynamics, 2013, 73(1/2):229-244. doi: 10.1007%2Fs11071-013-0780-4.pdf
    [10] 刘燕斌, 陆宇平.基于反步法的高超音速飞机纵向逆飞行控制[J].控制与决策, 2007, 22(3):313-317. http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200703014.htm

    LIU Y B, LU Y P.Longitudinal inversion flight control based on backstepping for hypersonic vehicle[J].Control and Decision, 2007, 22(3):313-317(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KZYC200703014.htm
    [11] 黄喜元, 王青, 董朝阳.基于Backstepping的高超声速飞行器鲁棒自适应控制[J].系统工程与电子技术, 2011, 33(6):1321-1326. http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015

    HUANG X Y, WANG Q, DONG C Y.Robust adaptive control of hypersonic vehicles via Backstepping method[J].Systems Engineering and Electronics, 2011, 33(6):1321-1326(in Chinese). http://youxian.cnki.com.cn/yxdetail.aspx?filename=HEBG20170428010&dbname=CAPJ2015
    [12] XU B, GAO D X, WANG S X.Adaptive neural control based on HGO for hypersonic flight vehicles[J].Science China Information Sciences, 2011, 54(3):511-520. doi: 10.1007/s11432-011-4189-8
    [13] XU B, FAN Y H, ZHANG S M.Minimal-learning-parameter technique based adaptive neural control of hypersonic flight dynamics without back-stepping[J].Neurocomputing, 2015, 164(C):201-209. doi: 10.1007/s11071-016-2637-0
    [14] SWAROOP D, HEDRICK J K, YIP P P, et al.Dynamic surface control for a class of nonlinear systems[J].IEEE Transactions on Automatic Control, 2000, 45(10):1893-1899. doi: 10.1109/TAC.2000.880994
    [15] XU B, HUANG X Y, WANG D W, et al.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J].Asian Journal of Control, 2014, 16(1):162-174. doi: 10.1002/asjc.2014.16.issue-1
    [16] WASEEM A B, LIN Y, KENDRICK A S.Adaptive integral dynamic surface control of a hypersonic flight vehicle[J].International Journal of Systems Science, 2015, 46(10):1717-1728. doi: 10.1080/00207721.2013.828798
    [17] 韩京清, 王伟.非线性跟踪微分器[J].系统科学与数学, 1994, 14(2):177-183. http://cdmd.cnki.com.cn/Article/CDMD-10530-2004138834.htm

    HAN J Q, WANG W.Nonlinear tracking-differentiator[J].Journal of Systems Science and Mathematical Science, 1994, 14(2):177-183(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10530-2004138834.htm
    [18] PARKER J T, SERRANI A, YURKOVICH S, et al.Control-oriented modeling of an air-breathing hypersonic vehicle[J].Journal of Guidance, Control, and Dynamics, 2007, 30(3):856-869. doi: 10.2514/1.27830
    [19] XU B, SHI Z K.An overview on flight dynamic and control approaches for hypersonic vehicles[J].Science China Information Sciences, 2015, 58(7):1-19. doi: 10.1007/s11431-016-0009-9
    [20] FIORENTINI L, SERRANI A.Adaptive restricted trajectory tracking for a non-minimum phase hypersonic vehicle model[J].Automatic, 2012, 48(7):1248-1261. doi: 10.1016/j.automatica.2012.04.006
    [21] GUO B Z, ZHAO Z L.On convergence of tracking differentiator[J].International Journal of Control, 2001, 84(4):693-701. http://www.docin.com/p-507789177.html
  • 加载中
图(8)
计量
  • 文章访问数:  790
  • HTML全文浏览量:  106
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 录用日期:  2017-01-06
  • 网络出版日期:  2017-10-20

目录

    /

    返回文章
    返回
    常见问答