留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CS的正则化稀疏度变步长自适应匹配追踪算法

刘浩强 赵洪博 冯文全

刘浩强, 赵洪博, 冯文全等 . 基于CS的正则化稀疏度变步长自适应匹配追踪算法[J]. 北京航空航天大学学报, 2017, 43(10): 2109-2117. doi: 10.13700/j.bh.1001-5965.2016.0830
引用本文: 刘浩强, 赵洪博, 冯文全等 . 基于CS的正则化稀疏度变步长自适应匹配追踪算法[J]. 北京航空航天大学学报, 2017, 43(10): 2109-2117. doi: 10.13700/j.bh.1001-5965.2016.0830
LIU Haoqiang, ZHAO Hongbo, FENG Wenquanet al. Regularized sparsity variable step-size adaptive matching pursuit algorithm for compressed sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2109-2117. doi: 10.13700/j.bh.1001-5965.2016.0830(in Chinese)
Citation: LIU Haoqiang, ZHAO Hongbo, FENG Wenquanet al. Regularized sparsity variable step-size adaptive matching pursuit algorithm for compressed sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 2109-2117. doi: 10.13700/j.bh.1001-5965.2016.0830(in Chinese)

基于CS的正则化稀疏度变步长自适应匹配追踪算法

doi: 10.13700/j.bh.1001-5965.2016.0830
基金项目: 

国家自然科学基金 91438116

中国航天科技创新基金 2016-1-107

详细信息
    作者简介:

    刘浩强  男, 硕士研究生。主要研究方向:信号处理、压缩感知、室内定位和信息融合技术

    赵洪博  男, 博士, 讲师, 硕士生导师。主要研究方向:卫星导航、飞行器通信与测控等相关理论和关键技术

    冯文全  男, 博士, 教授, 博士生导师。主要研究方向:卫星通信与测控、卫星综合测试与仿真、卫星导航

    通讯作者:

    赵洪博, E-mail: bhzhb@126.com

  • 中图分类号: TN919.1

Regularized sparsity variable step-size adaptive matching pursuit algorithm for compressed sensing

Funds: 

National Natural Science Foundation of China 91438116

China Aerospace Science and Technology Innovation Fund 2016-1-107

More Information
  • 摘要:

    压缩感知(CS)能够突破Nyquist采样定理的瓶颈,使得高分辨率信号采集成为可能。重构算法是压缩感知中最为关键的部分,迭代贪婪算法是其中比较重要的研究方向。对压缩感知理论进行了详细分析,并在现有重构算法的基础上提出了一种新的迭代贪婪算法——正则化稀疏度变步长自适应匹配追踪(RSVssAMP)算法,可在信号稀疏度未知的情况下,结合正则化和步长自适应变化思想,快速精确地进行重构。相比于传统迭代贪婪算法,本文算法不依赖于信号稀疏度,并且应用正则化以确保选取支撑集的正确性。此外,应用自适应变化步长代替固定步长,能够提高重构速率,而且达到更高的精度。为了验证本文算法的正确性,选取高斯稀疏信号和离散稀疏信号分别进行仿真,并与现有算法进行比较。仿真结果表明,本文算法相比于现有算法可以实现更加精确快速的重构。

     

  • 图 1  正则化稀疏度变步长自适应匹配追踪算法流程图

    Figure 1.  Flowchart of regularized sparsity variable step-size adaptive matching pursuit algorithm

    图 2  不同稀疏度下重构成功率比较

    Figure 2.  Comparison of reconstruction success rate under different sparsity

    图 3  不同稀疏度下重构时间比较

    Figure 3.  Comparison of reconstruction time under different sparsity

    图 4  不同观测值下重构成功率比较

    Figure 4.  Comparison of reconstruction success rate under different observed values

    图 5  不同观测值下重构时间比较

    Figure 5.  Comparison of reconstruction time under different observed values

    图 6  不同步长下重构成功率比较

    Figure 6.  Comparison of reconstruction success rate under different step-sizes

  • [1] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. doi: 10.1109/TIT.2006.871582
    [2] WANG X, ZHAO Z, ZHAO N, et al.On the application of compressed sensing in communication networks[C]//20105th International ICST Conference on Communications and Networking.Piscataway, NJ:IEEE Press, 2010:1-7.
    [3] WEI T C, WANG H Y.Research on application of compressed sensing based on signal decomposition[C]//Communication Problem-Solving(ICCP).Piscataway, NJ:IEEE Press, 2014:326-331.
    [4] 李博. 压缩感知理论的重构算法研究[D]. 长春: 吉林大学, 2013.

    LI B.Study on the reconstruction algorithms of the compressed sensing[D].Changchun:Jilin University, 2013(in Chinese).
    [5] MALLAT S G, ZHANG Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415. doi: 10.1109/78.258082
    [6] TROPP J A, GILBERT A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2007, 53(12):4655-4666. doi: 10.1109/TIT.2007.909108
    [7] DONOHO D L, TSAIG Y, DRORI I, et al.Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J].IEEE Transactions on Information Theory, 2012, 58(2):1094-1121. doi: 10.1109/TIT.2011.2173241
    [8] NEEDELL D, VERSHYNIN R.Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2):310-316. doi: 10.1109/JSTSP.2010.2042412
    [9] 杨真真, 杨震, 孙林慧.信号压缩重构的正交匹配追踪类算法综述[J].信号处理, 2013, 29(4):486-496. http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201304012.htm

    YANG Z Z, YANG Z, SUN L H.A survey on orthogonal matching pursuit type algorithms for signal compression and reconstruction[J].Journal of Signal Processing, 2013, 29(4):486-496(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201304012.htm
    [10] NEEDELL D, TROPP J A.CoSaMP:Iterative signal recovery from incomplete and inaccurate samples[J].Applied & Computational Harmonic Analysis, 2008, 26(3):301-321.
    [11] WEI D, MILENKOVIC O.Subspace pursuit for compressive sensing signal reconstruction[J].IEEE Transactions on Information Theory, 2009, 55(5):2230-2249. doi: 10.1109/TIT.2009.2016006
    [12] DO T T, GAN L, NGUYEN N, et al.Sparsity adaptive matching pursuit algorithm for practical compressed sensing[C]//Conference on Signals.Piscataway, NJ:IEEE Press, 2008:581-587.
    [13] 高睿, 赵瑞珍, 胡绍海.基于压缩感知的变步长自适应匹配追踪重建算法[J].光学学报, 2010, 30(6):1639-1644.

    GAO R, ZHAO R Z, HU S H.Variable step size adaptive matching pursuit algorithm for image reconstruction based on compressive sensing[J].Acta Optica Sinica, 2010, 30(6):1639-1644(in Chinese).
    [14] SUN H, NI L.Compressed sensing data reconstruction using adaptive generalized orthogonal matching pursuit algorithm[C]//Computer Science and Network Technology (ICCSNT), 20133rd International Conference.Piscataway, NJ:IEEE Press, 2014:1102-1106.
    [15] HUANG W Q, ZHAO J L, LV Z Q, et al.Sparsity and step-size adaptive regularized matching pursuit algorithm for compressed sensing[C]//Information Technology and Artificial Intelligence Conference.Piscataway, NJ:IEEE Press, 2014:536-540.
    [16] YU Z.Variable step-size compressed sensing-based sparsity adaptive matching pursuit algorithm for speech reconstruction[C]//Chinese Control Conference.Piscataway, NJ:IEEE Press, 2014:7344-7349.
    [17] LI J, WU Z, FENG H, et al.Greedy orthogonal matching pursuit algorithm for sparse signal recovery in compressive sensing[C]//Instrumentation and Measurement Technology Conference(I2MTC)Proceedings.Piscataway, NJ:IEEE Press, 2014:1355-1358.
  • 加载中
图(6)
计量
  • 文章访问数:  937
  • HTML全文浏览量:  123
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-27
  • 录用日期:  2016-12-23
  • 网络出版日期:  2017-10-20

目录

    /

    返回文章
    返回
    常见问答