-
摘要:
提出了一种捷联惯性/天文/雷达高度表的弹道导弹组合导航方法。针对传统SINS/星敏感器组合无法从根本上解决惯导速度位置误差发散的问题,引入RA测量数据,以海拔计算高度与海拔观测高度的差值作为新的量测量,并推导了全微分方程,结合姿态误差角建立4维观测模型,针对弹道中段导航,以SINS误差方程作为系统状态模型,通过扩展卡尔曼滤波(EKF)进行组合导航解算。仿真结果表明,当SINS精度为惯导级、星敏感器测量精度10″、RA测量精度50 m时,经过1 810 s的飞行,再入点时刻速度误差小于1 m/s、圆概率误差(CEP)为1.2 km,比传统SINS/CNS方法速度和位置误差分别减小了76.1%和65.0%。
-
关键词:
- 捷联惯性/天文 /
- 雷达高度表 /
- 组合导航 /
- 弹道导弹 /
- 扩展卡尔曼滤波(EKF)
Abstract:Aimed at ballistic missile, a strapdown inertial navigation system/celestial navigation system/radar altimeter (SINS/CNS/RA) integrated method was proposed. Since the velocity and position errors' divergent problem of SINS can not be fundamentally solved by conventional SINS/star tracker integrated method, altitude intercept between calculated sea level elevation and observed sea level elevation which was measured by RA is introduced and total differential equation can be deduced. The four-dimensional observation model combining altitude intercept with attitude angle errors and the state model of SINS error equation are established by using extend Kalman filter (EKF) based on midcourse phase navigation. The simulation results manifest that when SINS has an inertial precision grade, star tracker has measurement precision of 10″, and RA has measurement precision of 50 m, after 1 810 s' flight, the velocity error of reentry point is less than 1 m/s and the circular error probability (CEP) is 1.2 km, with a 76.1% decrease of velocity error and 65.0% decrease of position error compared with conventional SINS/CNS method.
-
表 1 导航器件仿真参数
Table 1. Simulation parameters of navigational apparatus
导航器 精度 采样周期 工作阶段 陀螺仪 常值漂移0.5(°)/h 0.01s t0 ~ t6 随机漂移0.1(°)/h(1σ) 加速度计 常值偏置50 μg 随机误差10 μg(1σ) 星敏感器 安装误差5″ 0.1s
(交替间隔0.05s)t5 ~ t6 测量误差10″(1σ) 雷达高度表 测量误差50m(1σ) 表 2 再入点误差
Table 2. Reentry point error
组合模式 位置误差/m 速度误差/(m·s-1) SINS 5 396 7.63 SINS/CNS 3 456 2.72 SINS/CNS/RA 1 211 0.65 表 3 再入点位置误差统计表
Table 3. Statistics of reentry point position error
再入点坐标(φr, λr) 位置误差/m (40°7′7″ N, 129°1′23″ W) 1 098 (40°7′3″ N, 129°1′29″ W) 942 (40°7′9″ N, 129°1′22″ W) 1 186 (40°7′16″ N, 129°1′12″ W) 1 472 (40°7′7″ N, 129°1′24″ W) 1 094 (40°7′6″ N, 129°1′26″ W) 1 056 (40°7′11″ N, 129°1′17″ W) 1 286 (40°7′10″ N, 129°1′24″ W) 1 172 (40°7′7″ N, 129°1′24″ W) 1 095 (40°7′9″ N, 129°1′20″ W) 1 200 (40°7′21″ N, 129°1′3″ W) 1 741 (40°7′7″ N, 129°1′22″ W) 1 119 (40°7′14″ N, 129°1′15″ W) 1 385 (40°7′2″ N, 129°1′34″ W) 845 (40°7′7″ N, 129°1′25″ W) 1 076 (40°7′12″ N, 129°1′16″ W) 1 325 (40°7′1″ N, 129°1′28″ W) 876 (40°7′13″ N, 129°1′14″ W) 1 385 (40°7′14″ N, 129°1′13″ W) 1 402 (40°7′16″ N, 129°1′10″ W) 1 511 -
[1] 徐帆, 房建成.基于状态转移阵的SINS/星光组合速度位置误差估计方法[J].航天控制, 2007, 25(6):27-31.XU F, FANG J C.Velocity and position error compensation using SINS/star integration based on evaluation of transition matrix[J].Aerospace Control, 2007, 25(6):27-31(in Chinese). [2] NING X L, WANG L H, BAI X B, et al.Autonomous satellite navigation using starlight refraction angle measurements[J]. Advances in Space Research, 2013, 51(9):1761-1772. doi: 10.1016/j.asr.2012.12.008 [3] QIAN H M, SUN L, CAI J N, et al.A starlight refraction scheme with single star sensor used in autonomous satellite navigation system[J].Acta Astronautica, 2014, 96:45-52. doi: 10.1016/j.actaastro.2013.11.028 [4] 屈蔷, 刘建业, 熊智, 等.机载天文/惯性位置组合导航[J].南京理工大学学报, 2010, 34(6):729-732.QU Q, LIU J Y, XIONG Z, et al.Airborne SINS/CNS location integrated system[J].Journal of Nanjing University of Science and Technology, 2010, 34(6):729-732(in Chinese). [5] LORENZ R D, SVEDHEM H, TRAUTNER R, et al.Observations of the surface of Titan by the radar altimeters on the Huygens probe[J].Icarus, 2016, 270:248-259. doi: 10.1016/j.icarus.2015.11.007 [6] 刘军, 韩潮.基于UKF的雷达高度计自主定轨[J].北京航空航天大学学报, 2006, 32(8):889-893.LIU J, HAN C.Autonomous orbit determination of spacecraft based on UKF using radar altimeter[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8):889-893(in Chinese). [7] 邓欢, 李亚超, 全英汇, 等.弹载下降段大前斜聚束SAR成像时序设计[J].系统工程与电子技术, 2016, 38(5):1032-1038. doi: 10.3969/j.issn.1001-506X.2016.05.10DENG H, LI Y C, QUAN Y H, et al.Sequential design for highly squinted missile-borne spotlight SAR imaging on descent trajectory[J].Systems Engineering and Electronics, 2016, 38(5):1032-1038(in Chinese). doi: 10.3969/j.issn.1001-506X.2016.05.10 [8] 张华. 雷达高度表动态环境模拟理论与技术研究[D]. 武汉: 华中科技大学, 2011.ZHANG H.Research on theory and technology of radar altimeter dynamic environment simulation[D].Wuhan:Huazhong University of Science and Technology, 2011(in Chinese). [9] PATEL A, KWOK R, LEUSCHEN C, et al.Fine-resolution radar altimeter measurements on land and sea ice[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2547-2564. doi: 10.1109/TGRS.2014.2361641 [10] 王海涌, 高自谦. 针对惯性导航的雷达高度表辅助方法: 201610180539. 9[P]. 2016-08-10.WANG H Y, GAO Z Q.Radar altimeter aided method based on inertial navigation:201610180539.9[P].2016-08-10(in Chinese). [11] 周啟航, 张刘, 霍明英, 等.弹道导弹中段突防弹道设计与验证[J].光学精密工程, 2015, 23(9):2645-2655.ZHOU Q H, ZHANG L, HUO M Y, et al.Design and validation of ballistic missile midcourse penetration trajectory[J].Optics and Precision Engineering, 2015, 23(9):2645-2655(in Chinese). [12] THEIL S, STEFFES S, SAMAAN M, et al.Hybrid navigation system for spaceplanes, launch and re-entry vehicles:AIAA-2009-7381[R].Reston:AIAA, 2009. doi: 10.2514/6.2009-7381 [13] 邓红, 刘光斌, 陈昊明, 等.基于UKF的导弹SINS/CNS姿态估计方法[J].系统工程与电子技术, 2010, 32(9):1987-1990.DENG H, LIU G B, CHEN H M, et al.Application of missile attitude estimation based on UKF algorithm[J].Systems Engineering and Electronics, 2010, 32(9):1987-1990(in Chinese). [14] ZHANG H B, ZHENG W, TANG G J.Stellar/inertial integrated guidance for responsive launch vehicles[J].Aerospace Science and Technology, 2012, 18(1):35-41. doi: 10.1016/j.ast.2011.04.003 [15] SEIDELMANN P K, SEAGO J H.Time scales, their users, and leap seconds[J].Metrologia, 2011, 48(4):186-194. doi: 10.1088/0026-1394/48/4/S09 [16] 李镇, 王海涌, 靳宇航, 等.一种弹道导弹捷联惯导/地磁组合导航方法[J].中国惯性技术学报, 2015, 23(5):636-641.LI Z, WANG H Y, JIN Y H, et al.Strapdown inertial/geomagnetic integrated navigation method for ballistic missile[J].Journal of Chinese Inertial Technology, 2015, 23(5):636-641(in Chinese). [17] LV P, LAI J Z, LIU J Y, et al.Stochastic error simulation method of fiber optic gyros based on performance indicators[J].Journal of the Franklin Institute, 2014, 351(3):1501-1516. doi: 10.1016/j.jfranklin.2013.11.007 -