留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MDP的战机对抗导弹措施优化方法

宋海方 肖明清 陈游 胡阳光

宋海方, 肖明清, 陈游, 等 . 基于MDP的战机对抗导弹措施优化方法[J]. 北京航空航天大学学报, 2017, 43(5): 942-950. doi: 10.13700/j.bh.1001-5965.2016.0381
引用本文: 宋海方, 肖明清, 陈游, 等 . 基于MDP的战机对抗导弹措施优化方法[J]. 北京航空航天大学学报, 2017, 43(5): 942-950. doi: 10.13700/j.bh.1001-5965.2016.0381
SONG Haifang, XIAO Mingqing, CHEN You, et al. MDP method for optimization of fighter aircraft's countermeasures against missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 942-950. doi: 10.13700/j.bh.1001-5965.2016.0381(in Chinese)
Citation: SONG Haifang, XIAO Mingqing, CHEN You, et al. MDP method for optimization of fighter aircraft's countermeasures against missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 942-950. doi: 10.13700/j.bh.1001-5965.2016.0381(in Chinese)

基于MDP的战机对抗导弹措施优化方法

doi: 10.13700/j.bh.1001-5965.2016.0381
详细信息
    作者简介:

    宋海方, 男, 博士研究生。主要研究方向:电子对抗理论与技术、导弹对抗措施优化方法

    肖明清, 男, 博士, 教授, 博士生导师。主要研究方向:武器系统与运用工程、导弹综合测试与保障

    通讯作者:

    肖明清,E-mail:xmqing@sohu.com

  • 中图分类号:  TN972;TJ765;V557+.2

MDP method for optimization of fighter aircraft's countermeasures against missile

More Information
  • 摘要:

    对战机对抗导弹的措施优化问题进行了研究,将该问题归结为不确定条件下的序贯决策问题,提出了一种基于Markov决策过程(MDP)的导弹对抗措施优化方法。首先, 该方法根据作战过程将作战阶段分为不同的状态,将电子对抗措施(ECM)和战术机动作为可供战机选择的行动;然后, 通过不同战术行动下状态之间的转移概率来反映行动的不确定性,以雷达搜索状态和导弹命中状态的期望值来表征不同策略下的飞机生存力;最后,通过建立Markov决策模型得到飞机生存力最大时各个状态对应的最佳行动。仿真结果表明:飞机生存力随着时间推移而逐渐降低;不同策略下飞机的生存力不同,基于MDP的策略可以有效提高飞机的生存力;单步优化措施不能提高战机的生存力,必须考虑长期状态转移的影响。

     

  • 图 1  典型的对地突防作战场景

    Figure 1.  Typical air-to-ground penetration scenario

    图 2  战术决策模型

    Figure 2.  Strategic decision-making model

    图 3  状态及其转移情况

    Figure 3.  States and their transitions

    图 4  最佳策略下各状态与行动的对应关系

    Figure 4.  Relationship between states and actions under optimal policy

    图 5  单次实验作战状态的转移情况

    Figure 5.  Fighting state transition in one trial

    图 6  有限时间内各状态的平均占有率

    Figure 6.  Average occupancy rate for all states in finite time steps

    图 7  不同初始状态下s1s13的平均占有率

    Figure 7.  Average occupancy rate of s1 and s13 under different initial states

    图 8  不同策略下的状态转移情况

    Figure 8.  State transition under different policies

    图 9  不同策略下的行动

    Figure 9.  Actions under different policies

    图 10  不同策略下s13的平均占有率(γ=0.90)

    Figure 10.  Average occupancy rate of s13 under different policies (γ=0.90)

    图 11  不同策略下s1的平均占有率

    Figure 11.  Average occupancy rate of s1 under different policies

    表  1  状态集及其元素

    Table  1.   State set and its elements

    编号 状态名称及缩写
    s1 Search
    s2 Acquisition (ACQ)
    s3 Non-Adaptive Track (NAT)
    s4 Range Resolution 1 (RR1)
    s5 Range Resolution 2 (RR2)
    s6 Range Resolution 3 (RR3)
    s7 Track Maintenance (TM)
    s8 Passive Track (PT)
    s9 Missile Launching (ML)
    s10 Mid-Course Guidance (MCG)
    s11 Terminal Guidance (TG)
    s12 Miss the target (Miss)
    s13 Hit the target (Hit)
    下载: 导出CSV

    表  2  行动集及其元素

    Table  2.   Action set and its elements

    行动集 状态相关的行动 行动名称
    A1 a1s1, s2, s10 Multi False Target (MFT)
    a2s1~s7, s10 Noise Jamming (NJ)
    a3s4 Range False Target 1 (RFT1)
    a4s5 Range False Target 2 (RFT2)
    a5s6 Range False Target 3 (RFT3)
    a6s3 Range-Gate Pull-Off (RGPO)
    a7s7, s10 Velocity-Range-Gate Pull-Off (VRGPO)
    a8s11 Flares+Chaffs
    a9s8 No Jamming (NoJ)
    A2 a10s1 No Maneuvering (NoM)
    a11s7 Maximum Acceleration (MA)
    a12s7 Maximum Deceleration (MD)
    a13s10, s11 Maximum Overload Pull-Up (MOPU)
    a14s10, s11 Maximum Overload Dive (MOD)
    a15s10, s11 Maximum Overload Left Turn (MOLT)
    a16s10, s11 Maximum Overload Right Turn (MORT)
    A3 a17s2, s7 MOPU/MOD/MOLT/MORT+MFT
    a18s7, s10 MOPU/MOD/MOLT/MORT+VRGPO
    a19s10, s11 MA/MD+Chaffs+Flares
    a20s11 MOPU/MOD/MOLT/MORT+Chaffs+Flares
    下载: 导出CSV
  • [1] ERLANDSSON T, NIKLASSON L. An air-to-ground combat survivability model[J].Journal of Defense Modeling and Simulation, Application, Methodology, Technology, 2013, 12(3):1-15.
    [2] RANDLEFF L R.Decision support system for fighter pilots[D].Kongens Lyngby:Technical University of Denmark, 2007.
    [3] ZARCHAN P.Tactical and strategic missile guidance[M].6th ed.Reston:AIAA, 2012:33-58.
    [4] VIRTANEN K, RAIVIO T.Decision theoretical approach to pilot simulation[J].Journal of Aircraft, 1999, 36(4):18-27.
    [5] VIRTANEN K, KARELAHTI J, RAIVIO T.Modeling air combat by a moving horizon influence diagram game[J].Journal of Guidance, and Dynamics, 2006, 29(5):1080-1091. doi: 10.2514/1.17168
    [6] YOMCHINDA T.A study of autonomous evasive planar-maneuver against proportional-navigation guidance missiles for unmanned aircraft[C]//2015 Asian Conference on Defense Technology.Piscataway, NJ:IEEE Press, 2015.
    [7] BACHMANN D J, EVANS R J, MORAN B.Game theoretic analysis of adaptive radar jamming[J].IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2):1081-1100. doi: 10.1109/TAES.2011.5751244
    [8] BROOKS R R, PANG J E, GRIFFIN C.Game and information theory analysis of electronic countermeasures in pursuit-evasive games[J].IEEE Transactions on Systems, Man and Cybernetics-Part A:Systems and Humans, 2008, 38(6):1281-1294. doi: 10.1109/TSMCA.2008.2003970
    [9] 沈阳, 陈永光, 李修和.基于0-1规划的雷达干扰资源优化分配研究[J].兵工学报, 2007, 28(5):528-532. http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO200705004.htm

    SHEN Y, CHEN Y G, LI X H.Research on optimal distribution of radar jamming resource based on zero-one programming[J].Acta Armamentarii, 2007, 28(5):528-532(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BIGO200705004.htm
    [10] MOORE F W.A methodology for missile countermeasures optimization under uncertainty[J].Evolutionary Computation, 2002, 10(2):129-149. doi: 10.1162/106365602320169820
    [11] BALL R E.The fundamentals of aircraft combat survivability analysis and design[M].2nd ed.Reston:AIAA, 2003:445-602.
    [12] 杨哲, 李曙林, 周莉.机载自卫压制干扰和箔条干扰下飞机生存力研究[J].北京理工大学学报, 2013, 33(4):375-379. http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201304011.htm

    YANG Z, LI S L, ZHOU L.Study of aircraft survivability under the conditions of self-defense jamming and chaff jamming[J].Transactions on Beijing Institute of Technology, 2013, 33(4):375-379(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201304011.htm
    [13] 宋海方, 肖明清, 吴华, 等.不同机载电子干扰条件下的飞机敏感性模型[J].航空学报, 2015, 36(11):3630-3639. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511014.htm

    SONG H F, XIAO M Q, WU H, et al.Genetic model of aircraft susceptibility to different airborne electronic countermeasures[J].Acta Aeronautica et Astroautica Sinica, 2015, 36(11):3630-3639(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201511014.htm
    [14] ERLANDSSON T, NIKLASSON L.Automatic evaluation of air mission routes with respect to combat survival[J].Information Fusion, 2014, 20(1):88-98.
    [15] HASAN S M, GUITOUNI A.Variable dwell time task scheduling for multifunction radar[J].IEEE Transactions on Automation Science and Engineering, 2014, 11(2):463-472. doi: 10.1109/TASE.2013.2285014
    [16] MARTINO A D. 现代电子战系统导论[M]. 姜道安, 等, 译. 北京: 电子工业出版社, 2014: 5-18.

    MARTINO A D.Introduction to modern EW systems[M].JIANG D A, et al, translated.Beijing:Publishing House of Electronic Industry, 2014:5-18(in Chinese).
    [17] SIGAUD O, BUFFET O.Markov decision processes in artificial intelligence:MDPs, beyond MDPs and applications[M].New York:John Wiley & Sons, 2010:1-63.
    [18] RUSSELL S J, NORVIG P.Artificial intelligence:A modern approach[M].3rd ed.Beijing:Tsinghua University Press, 2011:645-684.
    [19] VISNEVSKI N, KRISHNAMURTHY V, WANG A, et al.Syntactic modeling and signal processing of multifunction radars:A stochastic context-free grammar approach[J].Proceeding of IEEE, 2007, 95(5):1000-1025. doi: 10.1109/JPROC.2007.893252
    [20] 傅莉, 谢福怀, 孟光磊, 等.基于滚动时域的无人机空战决策专家系统[J].北京航空航天大学学报, 2015, 41(11):1994-1999. http://bhxb.buaa.edu.cn/CN/abstract/abstract13557.shtml

    FU L, XIE F H, MENG G L, et al.An UAV air-combat decision expert system based on receding horizon control[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11):1994-1999(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13557.shtml
    [21] 娄寿春.面空导弹武器系统分析[M].北京:国防工业出版社, 2013:50-132.

    LOU S C.Surface-to-air missile weapon system analysis[M].Beijing:National Defense Industry Press, 2013:50-132(in Chinese).
    [22] BANDIERA F, FARINA A, ORLANDO D, et al.Detection algorithms to discriminate between radar targets and ECM signals[J].IEEE Transactions on Signal Processing, 2010, 58(12):5984-5993. doi: 10.1109/TSP.2010.2077283
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  765
  • HTML全文浏览量:  68
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-09
  • 录用日期:  2016-08-10
  • 网络出版日期:  2017-05-20

目录

    /

    返回文章
    返回
    常见问答