留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

产生匀强磁场的圆柱形线圈组设计方法

胡朝晖 穆维维 吴文峰 周斌权

胡朝晖, 穆维维, 吴文峰, 等 . 产生匀强磁场的圆柱形线圈组设计方法[J]. 北京航空航天大学学报, 2018, 44(3): 454-461. doi: 10.13700/j.bh.1001-5965.2017.0152
引用本文: 胡朝晖, 穆维维, 吴文峰, 等 . 产生匀强磁场的圆柱形线圈组设计方法[J]. 北京航空航天大学学报, 2018, 44(3): 454-461. doi: 10.13700/j.bh.1001-5965.2017.0152
HU Zhaohui, MU Weiwei, WU Wenfeng, et al. Design method of cylindrical coil systems for generating uniform magnetic field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 454-461. doi: 10.13700/j.bh.1001-5965.2017.0152(in Chinese)
Citation: HU Zhaohui, MU Weiwei, WU Wenfeng, et al. Design method of cylindrical coil systems for generating uniform magnetic field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 454-461. doi: 10.13700/j.bh.1001-5965.2017.0152(in Chinese)

产生匀强磁场的圆柱形线圈组设计方法

doi: 10.13700/j.bh.1001-5965.2017.0152
基金项目: 

国家自然科学基金 61227902

国家“863”计划 2014AA123401

详细信息
    作者简介:

    胡朝晖  男, 博士, 讲师, 硕士生导师。主要研究方向:量子传感技术

    周斌权  男,硕士,讲师。主要研究方向:原子陀螺仪技术

    通讯作者:

    周斌权. E-mail: bqzhou@buaa.edu.cn

  • 中图分类号: TL62+2

Design method of cylindrical coil systems for generating uniform magnetic field

Funds: 

National Natural Science Foundation of China 61227902

National High-tech Research and Development Program of China 2014AA123401

More Information
  • 摘要:

    在精密测量和航空航天领域,原子陀螺仪、原子磁强计等对线圈产生磁场的均匀度有很高的要求,而传统的亥姆霍兹线圈磁场均匀度较差,难以满足应用需求。为了设计产生高均匀度磁场的线圈组,基于线圈轴向磁场的泰勒展开式,提出了任意线圈数的圆柱形线圈组参数的计算方法,并给出了9线圈以内的线圈参数,分析了磁场均匀度、线圈尺寸、线圈最大安匝比随线圈个数的变化趋势。结果表明随着线圈个数的增加,均匀区面积几乎线性增大,9线圈组磁场均匀度优于0.01%的区域面积约为亥姆霍兹线圈的30倍。在要求各个线圈由整数匝线圈组成且各匝线圈电流相同的情况下,提出了一种线圈安匝比取整的方法,并给出2~9线圈组的安匝比取整结果,计算结果表明相同线圈个数下设计的线圈组产生磁场的均匀度优于已有文献。以5线圈组为例,对实际线圈组制作工艺产生的误差进行了仿真分析,仿真结果表明,考虑误差的情况下,设计的尺寸和磁场也满足原子陀螺仪、原子磁强计等的实际要求。

     

  • 图 1  5线圈组和6线圈组结构示意图

    Figure 1.  Configuration of five-coil and six-coil systems

    图 2  线圈组轴向尺寸和最大安匝比随线圈个数的变化

    Figure 2.  Variation of coil systems' axial size and maximum ampere-turn ratio with coil number

    图 3  各线圈组产生磁场的均匀度等高线

    Figure 3.  Contours of magnetic field uniformity for each coil system

    图 4  均匀区面积与线圈个数关系

    Figure 4.  Variation of uniform region area with coil number

    图 5  线圈安匝比取整程序流程图

    Figure 5.  Program flowchart of coil ampere-turn ratio rounding

    图 6  实际制作5线圈组线圈分布图

    Figure 6.  Coil distribution diagram of practical five-coil system

    图 7  5线圈组ε≤0.01%区域面积与ϕ/R关系

    Figure 7.  Variation of five-coil system's region area(ε≤0.01%) with ϕ/R

    表  1  圆柱形线圈组的理论参数

    Table  1.   Theoretical parameters of cylindrical coil systems

    线圈个数N 各线圈到中心的距离(坐标)di 各线圈与中心线圈的安匝比ni
    2 ±0.5R 1
    3 0,±0.760 1R 1/1.881 6
    4 ±0.243 2R,±0.940 8R 1/2.260 4
    5 0,±0.409 2R,±1.080 1R 1/1.223 2/3.000 7
    6 ±0.162 6R,±0.537 0R,±1.193 9R 1/1.347 7/3.455 2
    7 0,±0.286 2R,±0.641 6R,±1.290 2R 1/1.105 8/1.575 0/4.146 8
    8 ±0.122 4R,±0.386 7R,±0.730 3R,±1.373 6R 1/1.173 3/1.730 5/4.636 0
    9 0,±0.221 1R,±0.471 8R,±0.807 7R,±1.447 3R 1/1.062 3/1.2952/1.955 8/5.3028
    下载: 导出CSV

    表  2  各线圈组ε≤0.01%和ε≤0.1%区域比较

    Table  2.   Comparison of each coil system between regions of ε≤0.01% and ε≤0.1%

    线圈个数N ε≤0.01%区域 ε≤0.1%区域
    |z|/R最大值 r/R最大值 面积/R2 |z|/R最大值 r/R最大值 面积/R2
    2 0.097 0.123 0.065 0.173 0.217 0.206
    3 0.226 0.267 0.271 0.336 0.384 0.584
    4 0.350 0.387 0.561 0.478 0.504 1.001
    5 0.458 0.479 0.873 0.597 0.588 1.396
    6 0.563 0.544 1.179 0.701 0.648 1.754
    7 0.649 0.608 1.467 0.791 0.696 2.074
    8 0.717 0.645 1.733 0.868 0.731 2.354
    9 0.789 0.679 1.979 0.940 0. 759 2.595
    下载: 导出CSV

    表  3  各线圈组在η分别达到85%、95%和99%时的最小整数安匝比及实际面积

    Table  3.   Minimum integer ampere-turn ratio and actual area for each coil system when η is greater than or equal to 85%, 95% and 99%

    线圈个数N η ≥85% η ≥95% η ≥99%
    最小整数安匝比 实际面积/R2 最小整数安匝比 实际面积/R2 最小整数安匝比 实际面积/R2
    2 1/1 0.065 1/1 0.065 1/1 0.065
    3 15/8/15 0.262 15/8/15 0.262 32/17/32 0.271
    4 34/15/15/34 0.501 43/19/19/43 0.534 52/23/23/52 0.561
    5 27/11/9/11/27 0.873 27/11/9/11/27 0.873 27/11/9/11/27 0.873
    6 38/15/11/11/15/38 1.007 121/47/35/35/47/121 1.147 159/62/46/46/62/159 1.171
    7 124/47/33/30/33/47/124 1.363 187/71/50/45/50/71/187 1.403 195/74/52/47/52/74/195 1.467
    8 186/69/47/40/40/47/69/186 1.487 190/71/48/41/41/48/71/190 1.648 241/90/61/52/52/61/90/241 1.727
    9 164/61/40/33/31/33/40/61/164 1.912 164/61/40/33/31/33/40/61/164 1.912 389/143/95/78/73/78/95/143/389 1.960
    下载: 导出CSV
  • [1] MEYER D, LARSEN M.Nuclear magnetic resonance gyro for inertial navigation[J]. Gyroscopy and Navigation, 2014, 5(2):75-82. doi: 10.1134/S2075108714020060
    [2] FANG J C, WAN S A.Atomic spin gyroscope based on 129Xe-Cs comagnetometer[J]. Science Bulletin, 2013, 58(13):1512-1515. doi: 10.1007/s11434-013-5759-5
    [3] DANG H B, MALOOF A C, ROMALIS M V.Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J]. Applied Physics Letters, 2010, 97(15):151110. doi: 10.1063/1.3491215
    [4] HILSCHENZ I, ITO Y, NATSUKAWA H, et al.Remote detected low-field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil[J]. Journal of Magnetic Resonance, 2017, 274:89-94. doi: 10.1016/j.jmr.2016.11.006
    [5] GUSAROV A, LEVRON D, PAPERNO E, et al.Three-dimensional magnetic field measurements in a single SERF atomic-magnetometer cell[J]. IEEE Transactions on Magnetics, 2009, 45(10):4478-4481. doi: 10.1109/TMAG.2009.2021404
    [6] EKLUND E J. Microgyroscope based on spin-polarized nuclei[D]. Irvine: University of California, 2008: 87-88.
    [7] HANSON R J, PIPKIN F M.Magnetically shielded solenoid with field of high homogeneity[J]. Review of Scientific Instruments, 1965, 36(2):179-188. doi: 10.1063/1.1719514
    [8] SCHILL R A, HOFF K.Characterizing and calibrating a large Helmholtz coil at low ac magnetic field levels with peak magnitudes below the earth's magnetic field[J]. Review of Scientific Instruments, 2001, 72(6):2769-2776. doi: 10.1063/1.1368853
    [9] WANG L, LI G X, XU C L, et al.Effect of characteristic parameters on the magnetic properties of solenoid valve for high-pressure common rail diesel engine[J]. Energy Conversion & Management, 2016, 127:656-666. https://www.sciencedirect.com/science/article/pii/S0196890416308561
    [10] SONG X C.Comparison of magnetic field distribution and homogeneity between Helmholtz coil and Maxwell coil[J]. Journal of Magnetic Materials & Devices, 2016, 47(5):16-19. http://jpier.org/PIERM/pierm50/08.16062309.pdf
    [11] GARRETT M W.Axially symmetric systems for generating and measuring magnetic fields.Part Ⅰ[J]. Journal of Applied Physics, 1951, 22(9):1091-1107. doi: 10.1063/1.1700115
    [12] EVERETT J E, OSEMEIKHIAN J E.Spherical coils for uniform magnetic fields[J]. Journal of Scientific Instruments, 1966, 43(43):470-474. http://cn.bing.com/academic/profile?id=edd3ed4c00828ad6b7be2213669a4227&encoded=0&v=paper_preview&mkt=zh-cn
    [13] GOTTARDI G, MESIRCA P, AGOSTINI C, et al.A four coil exposure system (tetracoil) producing a highly uniform magnetic field[J]. Bioelectromagnetics, 2003, 24(2):125-133. doi: 10.1002/(ISSN)1521-186X
    [14] WANG J, SHE S, ZHANG S.An improved Helmholtz coil and analysis of its magnetic field homogeneity[J]. Review of Scientific Instruments, 2002, 73(5):2175-2179. doi: 10.1063/1.1471352
    [15] KIRSCHVINK J L.Uniform magnetic fields and double-wrapped coil systems:Improved techniques for the design of bioelectro-magnetic experiments[J]. Bioelectromagnetics, 1991, 13(5):401-411. http://cn.bing.com/academic/profile?id=f62b5494d46b19edd23faf01f529692f&encoded=0&v=paper_preview&mkt=zh-cn
    [16] BARANOVA V E, BARANOV P F, MURAVYOV S V, et al.The production of a uniform magnetic field using a system of axial coils for calibrating magnetometers[J]. Measurement Techniques, 2015, 58(5):550-555. doi: 10.1007/s11018-015-0752-9
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1324
  • HTML全文浏览量:  230
  • PDF下载量:  913
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 录用日期:  2017-04-24
  • 网络出版日期:  2018-03-20

目录

    /

    返回文章
    返回
    常见问答