留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞翼无人机机动飞行非线性鲁棒控制方法

李继广 陈欣 李亚娟 张榕

李继广, 陈欣, 李亚娟, 等 . 飞翼无人机机动飞行非线性鲁棒控制方法[J]. 北京航空航天大学学报, 2018, 44(1): 89-98. doi: 10.13700/j.bh.1001-5965.2017.0014
引用本文: 李继广, 陈欣, 李亚娟, 等 . 飞翼无人机机动飞行非线性鲁棒控制方法[J]. 北京航空航天大学学报, 2018, 44(1): 89-98. doi: 10.13700/j.bh.1001-5965.2017.0014
LI Jiguang, CHEN Xin, LI Yajuan, et al. Nonlinear robust control method for maneuver flight of flying wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 89-98. doi: 10.13700/j.bh.1001-5965.2017.0014(in Chinese)
Citation: LI Jiguang, CHEN Xin, LI Yajuan, et al. Nonlinear robust control method for maneuver flight of flying wing UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 89-98. doi: 10.13700/j.bh.1001-5965.2017.0014(in Chinese)

飞翼无人机机动飞行非线性鲁棒控制方法

doi: 10.13700/j.bh.1001-5965.2017.0014
基金项目: 

航空科学基金 20160152001

中央高校基本科研业务费专项资金 NS2015038

详细信息
    作者简介:

    李继广 男, 博士研究生。主要研究方向:非线性鲁棒控制、无人机控制系统设计开发

    陈欣 男, 博士, 研究员, 博士生导师。主要研究方向:无人机控制系统、三余度飞控计算机

    李亚娟 女, 博士, 讲师。主要研究方向:激光雷达大气探测

    通讯作者:

    陈欣, E-mail: chenxin@nuaa.edu.cn

  • 中图分类号: V249

Nonlinear robust control method for maneuver flight of flying wing UAV

Funds: 

Aeronautical Science Foundation of China 20160152001

the Fundamental Research Funds for the Central Universities NS2015038

More Information
  • 摘要:

    针对飞翼布局无人机操纵能力不足的特点,提出了结合流体矢量(FTV-E)控制技术控制策略。设计了内环补偿器以消除系统不利的耦合项,外环控制器采用了反步跟踪算法,并采用粒子群优化(PSO)补偿器补偿各种扰动和不可建模的耦合项的控制方案,证明了控制结构的稳定性。在传统反步控制方法的基础上,增加了内环补偿器。该内环补偿器保留了对飞行有利的气动阻尼项,降低外环控制器的保守性,方便工程实现。仿真结果显示,该控制方案是有效的。

     

  • 图 1  样例无人机结构图

    Figure 1.  Configuration of a sample UAV

    图 2  流体矢量涡轮增压发动机SolidWorks模型

    Figure 2.  Model of fluidic thrust vectoring-turbochargedengine by SolidWorks

    图 3  FTV-E控制过程的动态响应

    Figure 3.  Dynamic response of control process by FTV-E

    图 4  控制器结构图

    Figure 4.  Controller structure diagram

    图 5  控制器内环结构[29]

    Figure 5.  Structure of inner loop nonlinear controller[29]

    图 6  飞翼无人机蛇形机动仿真结果

    Figure 6.  Simulation results of flying wingUAV snake maneuver

    图 7  无人机蛇形机动出舵量

    Figure 7.  Rudder angle of UAV snake maneuver

    表  1  气动参数偏移幅度

    Table  1.   Aerodynamic disturbance coefficients

    参数ΔCβL/%ΔCβN/%CpL/%CrN/%ΔL/cm
    偏移幅度15-1020201.5
    下载: 导出CSV
  • [1] LAN C E, LI J L, YAU W C, et al. Longitudinal and lateral-directional coupling effects on nonlinear unsteady aerodynamic modeling from flight data[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2013: 394-402.
    [2] ALIKHAN M, PEYADA N K, GO T H.Flight dynamics and optimization of three-dimensional perching maneuver[J].Journal of Guidance, Control, and Dynamics, 2013, 36(6):1791-1797. doi: 10.2514/1.58894
    [3] GUO Y, YAO Y, WANG S, et al.Maneuver control strategies to maximize prediction errors in ballistic middle phase[J].Journal of Guidance, Control, and Dynamics, 2013, 36(4):1225-1234. doi: 10.2514/1.56818
    [4] ZHI Q, CAI Y L.Energy-management steering maneuver for thrust vector-controlled interceptors[J].Journal of Guidance, Control, and Dynamics, 2012, 35(6):1798-1804. doi: 10.2514/1.56611
    [5] MUELLER J B, GRIESEMER P R, THOMAS S J.Avoidance maneuver planning incorporating station-keeping constraints and automatic relaxation[J].Journal of Aerospace Computing Information & Communication, 2013, 10(6):306-322. https://experts.umn.edu/en/publications/avoidance-maneuver-planning-incorporating-station-keeping-constra
    [6] NEELY A J, GESTO F N, Young J. Performance studies of shock vector control fluidic thrust vectoring[C]//Proceedings of 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2007: 1-14.
    [7] KAREN A D. Summary of fluidic thrust vectoring research conducted at NASA langley research center: AIAA-2003-3800[R]. Reston: AIAA, 2003.
    [8] SADIQ M U. Performance analysis and flowfield characterization of secondary injection thrust vector control (SITVC) for a 2DCD nozzle[D]. Los Angeles: University of Southern California, 2007: 85-108.
    [9] 王猛杰, 额日其太, 王强.激波矢量控制喷管落压比影响矢量性能及分离区控制数值模拟[J].航空动力学学报, 2015, 30(3):527-538. doi: 10.13224/j.cnki.jasp.2015.03.002.html

    WANG M J, ERIQITAI, WANG Q.Numerical simulaton of nozzle pressure ratio effect on vector performance and separation control for shock vector control nozzle[J].Journal of Aerospace Power, 2015, 30(3):527-538(in Chinese). doi: 10.13224/j.cnki.jasp.2015.03.002.html
    [10] KIRANYAZ S, INCE T, GABBOUJ M.Dynamic data clustering using stochastic approximation driven multi-dimensional particle swarm optimization[J].Lecture Notes in Computer Science, 2010, 22(10):1448-1462. https://www.researchgate.net/publication/220867612_Dynamic_Data_Clustering_Using_Stochastic_Approximation_Driven_Multi-Dimensional_Particle_Swarm_Optimization
    [11] YANG Y, CHEN X, LI C.Transient performance improvement in model reference adaptive control using H optimal method[J].Journal of the Franklin Institute, 2015, 352(1):16-32. doi: 10.1016/j.jfranklin.2014.09.014
    [12] 杨艺, 陈欣, 李春涛.一种可保证瞬态特性的改进鲁棒模型参考自适应控制[J].控制与决策, 2015, 30(8):1379-1385. http://mall.cnki.net/magazine/Article/KZYC201508008.htm

    YANG Y, CHEN X, LI C T.A modified robust model reference adaptive controller with guaranteed transient performance[J].Control and Decision, 2015, 30(8):1379-1385(in Chinese). http://mall.cnki.net/magazine/Article/KZYC201508008.htm
    [13] 朱纪洪, 张尚敏, 周池军, 等.飞机超机动状态动力学特征及对控制系统的挑战[J].控制理论与应用, 2014, 31(12):1650-1662. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201412011

    ZHU J H, ZHANG S M, ZHOU C J, et al.Dynamic characteristics and challenges for control system of super-maneuverable aircraft[J].Control Theory & Applications, 2014, 31(12):1650-1662(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201412011
    [14] WILSON J R.UAV worldwide roundup 2007[J].Aerospace America, 2007, 45(5):30-37. https://www.researchgate.net/.../293001919_UAV_worldwide_roundup_2009
    [15] OSTERHUBER R. FCS requirements for combat aircraft-lessons learned for future designs[C]//Workshop on Stability & Control, 2011: STO-AVT-189.
    [16] LI J, CHEN X, LI Z. The attitude decoupling control of the flying wing UAV[C]//Proceedings of IEEE Guidance, Navigation and Control Conference. Piscataway, NJ: IEEE Press, 2017: 357-362.
    [17] BANKS A, VINCENT J, ANYAKOHA C.A review of particle swarm optimization.Part Ⅱ:Hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications[J].Natural Computing, 2008, 7(1):109-124. doi: 10.1007/s11047-007-9050-z
    [18] 范成礼, 邢清华, 范海雄, 等.带审敛因子的变邻域粒子群算法[J].控制与决策, 2014, 29(4):696-701. http://www.oalib.com/paper/1694662

    FAN C L, XING Q H, FAN H X, et al.Particle swarm optimization and variable neighborhood search algorithm with convergence criterions[J].Control and Decision.2014, 29(4):696-701(in Chinese). http://www.oalib.com/paper/1694662
    [19] 贾树晋, 杜斌, 岳恒.基于局部搜索与混合多样性策略的多目标粒子群算法[J].控制与决策, 2012, 27(6):813-819.

    JIA S J, DU B, YUE H.Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm[J].Control and Decision, 2012, 27(6);813-819(in Chinese).
    [20] 李擎, 张超, 陈鹏, 等.一种基于粒子群参数优化的改进蚁群算法[J].控制与决策, 2013, 28(6):873-879. http://www.doc88.com/p-2731097610225.html

    LI Q, ZHANG C, CHEN P, et al.Improved ant colony optimization algorithm based on particle swarm optimization[J].Control and Decision, 2013, 28(6):873-879(in Chinese). http://www.doc88.com/p-2731097610225.html
    [21] POLI R, KENNEDY J, BLACKWELL T.Particle swarm optimization:An overview[J].Swarm Intelligence, 2007, 1:33-57. doi: 10.1007/s11721-007-0002-0
    [22] SOEST W R V, CHU Q P, MULDER J A.Combined feedback linearization and constrained model predictive control for entry flight[J].Journal of Guidance, Control, and Dynamics, 2006, 29(2):427-434. doi: 10.2514/1.14511
    [23] SONNEVELDT L, CHU Q P, MULDER J A.Nonlinear flight control design using constrained adaptive backstepping[J].Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336. doi: 10.2514/1.25834
    [24] LEE T, KIM Y.Nonlinear adaptive flight control using backstepping and neural networks controller[J].Journal of Guidance, Control, and Dynamics, 2001, 24(4):675-682. doi: 10.2514/2.4794
    [25] SIEBERLING S, CHU Q P, MULDER J A.Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J].Journal of Guidance, Control, and Dynamics, 2010, 33(6):1732-1742. doi: 10.2514/1.49978
    [26] MACKUNIS W, PATRE P M, KAISER M K, et al.Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods[J].IEEE Transactions on Control Systems Technology, 2010, 18(6):1448-1456. doi: 10.1109/TCST.2009.2039572
    [27] JOHNSON E N, TURBE M A.Modeling, control, and flight testing of a small-ducted fan aircraft[J].Journal of Guidance, Control, and Dynamics, 2006, 29(4):769-779. doi: 10.2514/1.16380
    [28] XU B, HUANG X, WANG D, et al.Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation[J].Asian Journal of Control, 2014, 16(1):162-174. doi: 10.1002/asjc.2014.16.issue-1
    [29] 李继广, 陈欣, 王鑫, 等.飞翼无人机机动飞行非线性鲁棒自适应控制[J].系统工程与电子技术, 2017, 39(9):2058-2067. doi: 10.3969/j.issn.1001-506X.2017.09.20

    LI J G, CHEN X, WANG X, et al.Nonlinear robust adaptive control of flying wing UAV maneuvering flight[J].Systems Engineering and Electronics, 2017, 39(9):2058-2067(in Chinese). doi: 10.3969/j.issn.1001-506X.2017.09.20
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1077
  • HTML全文浏览量:  292
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-12
  • 录用日期:  2017-04-13
  • 网络出版日期:  2018-01-20

目录

    /

    返回文章
    返回
    常见问答