-
摘要:
非对称因素会导致舰载机在弹射后出现横航向偏离,并影响其纵向起飞航迹。针对定位偏心、弹射道偏角、甲板横摇等3类扰动因素,开展了这些非对称因素对飞机弹射起飞特性影响规律的理论分析与仿真计算,掌握了飞机在甲板滑跑段的偏航运动特性以及离舰上升段的横航向偏离特性。基于弹射起飞后飞机航迹下沉量与滚转角2项安全性要求,通过仿真计算建立了安全甲板风(WOD)包线,结果表明:安全甲板风包线的下边界由最大航迹下沉量约束,左右边界由最大滚转角限制确定,上边界由最大海面风速决定;定位偏心、甲板横摇等非对称因素将显著缩小安全甲板风包线的风速和风向角范围。
Abstract:Asymmetric factors lead to lateral-directional departure after catapult launch, and affect longitudinal flyaway characteristics as well. Principle analysis and numerical simulation are conducted to reveal yawing movement characteristics during deck run and lateral-directional departure characteristics in catapult flyaway, with the consideration of three typical factors, such as off-center position, catapult runway angle and deck roll. According to the safety requirements of sink off bow and bank angle, safe wind over deck (WOD) envelope is figured through numerical simulation under different takeoff conditions. Simulation results indicate that lower boundary of the envelope is limited by maximum sink off bow, left and right boundary is restricted to maximum bank angle, and upper boundary is determined by constant wind at sea level. The range of safe WOD's direction and speed would be obviously narrowed due to off-center position or deck roll.
-
表 1 基本仿真工况参数取值
Table 1. Basic working condition parameters for simulation
参数 数值 质量/kg 17 064 转动惯量Ixx/(kg·m2) 31 100 转动惯量Iyy/(kg·m2) 242 865 转动惯量Izz/(kg·m2) 263 029 转动惯量Ixz/(kg·m2) -3 399 起飞推力/kN 112.5 航向/(°) 0(正北) 风向/(°) 180(正北风) 典型航速/kn 15 典型风速/kn 10 表 2 不同弹射道偏角与海面风的组合条件
Table 2. Combined conditions of different catapult runway angles and sea wind
工况 航速/
(m·s-1)航向/
(°)风速/
(m·s-1)风向/
(°)弹射道偏角/
(°)工况1 10 0 0 0 工况2 10 0 0 -8 工况3 10 0 1.4 90 -8 工况4 10 0 1.4 90 0 表 3 不同工况的弹射过程分析
Table 3. Catapult process analysis for different working conditions
工况 弹射初始时刻(机舰相对速度为0 m/s) 弹射离舰时刻(机舰相对速度为60 m/s) 甲板风风速 飞机空速 侧向受力分析 飞机空速 侧向受力分析 飞机地速 航迹变化趋势 工况1 侧滑角0°,无侧力 侧滑角0°,无侧力沿跑道方向离舰,爬升时无侧风影响 工况2 侧滑角8°,机身受到向左的侧力 侧滑角1.1°,机身受到向左的侧力向跑道右前方离舰,爬升时无侧风影响 工况3 侧滑角0°,无侧力 侧滑角0°,无侧力向跑道右前方离舰,爬升时有侧风影响 工况4 侧滑角-8°,机身受到向右的侧力 侧滑角-1.1°,机身受到向右侧力沿跑道前方离舰,爬升时有侧风影响 注:飞机空速按式(21)计算获得。在弹射初始时刻,机舰相对速度为零,故飞机空速(虚线)等于甲板风风速(实线);在离舰时刻,机舰相对速度指向弹射道方向,故飞机空速(虚线)等于甲板风风速(短实线)与机舰相对速度(长实线)的矢量合成。 -
[1] 聂宏, 房兴波, 魏小辉, 等.舰载飞机弹射起飞动力学研究进展[J].南京航空航天大学学报, 2013, 45(6):727-738. doi: 10.3969/j.issn.1005-2615.2013.06.001NIE H, FANG X B, WEI X H, et al.Overview of carrier-based aircraft catapult launch dynamics[J].Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(6):727-738(in Chinese). doi: 10.3969/j.issn.1005-2615.2013.06.001 [2] 于浩, 聂宏.偏中心定位对弹射过程中飞机姿态的影响[J].北京航空航天大学学报, 2011, 37(1):10-14.YU H, NIE H.Effect of off-center location on aircraft attitude during catapult launch[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1):10-14(in Chinese). [3] 朱齐丹, 刘恒, 李晓琳.舰载机偏心情况下弹射起飞研究[J].飞行力学, 2016, 34(2):10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201602003.htmZHU Q D, LIU H, LI X L.Research on carrier-based aircraft catapult launching in the case of different eccentricity[J].Flight Dynamics, 2016, 34(2):10-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201602003.htm [4] 王大海, 苏彬.舰面运动对弹射起飞特性的影响[J].飞行力学, 1994, 12(1):57-63.WANG D H, SU B.The deck motion effects on the catapult-assisted take-off characteristics of the carrier based airplane[J].Flight Dynamics, 1994, 12(1):57-63(in Chinese). [5] LUCAS C B. Catapult criteria for a carrier-based airplane: AD-702814[R]. Washington, D. C. : Defense Technical Information Center, 1968. [6] 刘星宇, 许东松, 王立新.舰载飞机弹射起飞时的机舰参数适配特性[J].航空学报, 2010, 31(1):102-108.LIU X Y, XU D S, WANG L X.Match characteristics of aircraft-carrier parameters during catapult takeoff of carrier-based aircraft[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(1):102-108(in Chinese). [7] 郭元江, 李会杰, 申功璋, 等.复杂环境下舰载机弹射起飞环境因素建模分析[J].北京航空航天大学学报, 2011, 37(7):877-881.GUO Y J, LI H J, SHEN G Z, et al.Modeling and analyze of the environmental factors of carrier-based aircraft catapult launch in complex environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7):877-881(in Chinese). [8] 严重中, 冯家波.舰载飞机弹射起飞上升段的自动控制飞行[J].南京航空航天大学学报, 1995, 27(4):431-438.YAN C Z, FENG J B.Automatic control flight for a carrier-based airplane in climb phase during catapult launch[J].Journal of Nanjing University of Aeronautics and Astronautics, 1995, 27(4):431-438(in Chinese). [9] WALLACE M M. F/A-18E/F catapult minimum end airspeed testing[D]. Knoxville: University of Tennessee, 2002: 85-88. [10] STEN C P. Evaluating fixed wing aircraft in the aircraft carrier environment: AD-A244869[R]. Washington, D. C. : Defense Technical Information Center, 1992. [11] KELLEY H J.Prediction of yawing stability characteristics of airplanes during catapulting[J].Journal of the Aeronautics Sciences, 1952(19):529-539. [12] SMALL D B. Full scale tests of nose tow catapulting[C]//1st AIAA Annual Meeting. Reston: AIAA, 1964: 1-11. doi: 10.2514/6.1964-327 [13] 于浩, 聂宏.舰载机偏中心定位弹射起飞弹射杆载荷分析[J].航空学报, 2010, 31(10):1953-1959.YU H, NIE H.Launch bar load analysis of carrier-based aircraft during off-center catapult launch[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(10):1953-1959(in Chinese). [14] Naval Air Systems Command.NATOPS flight manual navy model F/A-18E/F 165533 and up aircraft[M].Washington, D.C.:Department of the Navy, 2008:Ⅲ-8-2. [15] WILKINSON C H, ROSCOE M F, VANDERVLIET G M. Determining fidelity standards for the shipboard launch and recovery task[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2001: 1-10. doi: 10.2514/6.2001-4062 [16] 贺少华, 刘东岳, 谭大力, 等.载机舰船气流场相关研究综述[J].舰船科学与技术, 2014, 36(2):1-7.HE S H, LIU D Y, TAN D L, et al.A review of researches on ship airwakes[J].Ship Science and Technology, 2014, 36(2):1-7(in Chinese). [17] WANG W J, QU X J, GUO L L.Multi-agent based hierarchy simulation models of carrier-based aircraft catapult launch[J].Chinese Journal of Aeronautics, 2008, 23(3):223-231. [18] ZHANG W, ZHANG Z, ZHU Q D.Dynamics model of carrier-based aircraft landing gears landed on dynamic deck[J].Chinese Journal of Aeronautics, 2009, 22(4):371-379. doi: 10.1016/S1000-9361(08)60113-2 [19] CHAKRABORTY A, SEILER P, BALAS G J.Susceptibility of F/A-18 flight controllers to the falling-leaf mode:Linear analysis[J].Journal of Guidance, Control, and Dynamics, 2011, 34(1):57-71. doi: 10.2514/1.50674 [20] NAPOLITANO M R, PARIS A C, SEANOR B A, et al. Estimation of the longitudinal aerodynamic parameters from flight data for the NASA F/A-18 HARV[C]//AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 1996: 469-478. doi: 10.2514/6.1996-3419 [21] JOHNSON S A. A simple dynamic engine model for use in a real-time aircraft simulation with thrust vectoring: NASA TM-4240[R]. Washington, D. C. : NASA, 1990. [22] BUTTRILL C S, ARBUCKLE P D, HOFFLER K D. Simulation model of a twin-tail, high performance airplane: NASA TM-107601[R]. Washington, D. C. : NASA, 1992. [23] 刘海良, 王立新.基于数字虚拟飞行的民用飞机纵向地面操稳特性评估[J].航空学报, 2015, 36(5):1432-1441.LIU H L, WANG L X.Assessment of longitudinal ground stability and control for civil aircraft based on digital virtual flight testing method[J].Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1432-1441(in Chinese). [24] 郭锁凤, 申功璋, 吴成富.先进飞行控制系统[M].北京:国防工业出版社, 2003:208.GUO S F, SHEN G Z, WU C F.Advanced flight control system[M].Beijing:National Defense Industry Press, 2003:208(in Chinese). [25] U. S. Department of the Navy. Catapulting and arresting gear forcing functions for aircraft structural design: MIL-STD-2066[S]. Melbourne: Engineering Specifications and Standards, 1981: 47-54. [26] SCHUST A P, YOUNG P N, SIMPSON W R. Automatic carrier landing system (ACLC) category Ⅲ certification manual: AD-A118181[R]. Washington, D. C. : Defense Technical Information Center, 1982. 期刊类型引用(3)
1. 吴梓宏,梁兆楷. 基于FPGA的卷积神经网络优化压缩技术研究. 微型电脑应用. 2023(02): 143-146 . 百度学术
2. 李远松,丁津津,徐晨,高博,汤汉松,单荣荣. 基于智能感知与深度学习的智能变电站设备状态检测方法. 电气工程学报. 2022(02): 208-214 . 百度学术
3. 彭泽武,蔡雄,杨秋勇,苏华权. 基于FPGA的深度卷积神经网络优化压缩算法研究. 计算技术与自动化. 2021(04): 74-78 . 百度学术
其他类型引用(3)
-