留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型并联灌注机器人运动学分析和多目标优化

杨会 房海蓉 李典 方跃法

杨会, 房海蓉, 李典, 等 . 一种新型并联灌注机器人运动学分析和多目标优化[J]. 北京航空航天大学学报, 2018, 44(3): 568-575. doi: 10.13700/j.bh.1001-5965.2017.0157
引用本文: 杨会, 房海蓉, 李典, 等 . 一种新型并联灌注机器人运动学分析和多目标优化[J]. 北京航空航天大学学报, 2018, 44(3): 568-575. doi: 10.13700/j.bh.1001-5965.2017.0157
YANG Hui, FANG Hairong, LI Dian, et al. Kinematics analysis and multi-objective optimization of a novel parallel perfusion robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 568-575. doi: 10.13700/j.bh.1001-5965.2017.0157(in Chinese)
Citation: YANG Hui, FANG Hairong, LI Dian, et al. Kinematics analysis and multi-objective optimization of a novel parallel perfusion robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 568-575. doi: 10.13700/j.bh.1001-5965.2017.0157(in Chinese)

一种新型并联灌注机器人运动学分析和多目标优化

doi: 10.13700/j.bh.1001-5965.2017.0157
基金项目: 

国家自然科学基金 51675037

详细信息
    作者简介:

    杨会  女, 博士研究生。主要研究方向:并联机器人机构学

    房海蓉  女, 博士, 教授, 博士生导师。主要研究方向:并联机器人机构学、数字化制造技术与装备、机电装备系统设计

    李典  男, 博士研究生。主要研究方向:并联机器人机构学

    方跃法  男, 博士, 教授, 博士生导师。主要研究方向:机器人学、CAD/CAM、机械系统动力学、现代机械设计

    通讯作者:

    房海蓉, E-mail: hrfang@bjtu.edu.cn

  • 中图分类号: TH112

Kinematics analysis and multi-objective optimization of a novel parallel perfusion robot

Funds: 

National Natural Science Foundation of China 51675037

More Information
  • 摘要:

    针对大型航天器蜂窝结构灌注需求,提出一种新型串并混联灌注机器人机构,主要对并联机构进行分析研究。首先,对3PSS-PU并联机构进行了运动学分析,建立了运动学反解数学模型和雅可比矩阵;其次,确定了影响机构工作空间主要因素的约束条件,求解出了机构的工作空间;然后,建立了机构的刚度模型,求得机构在运动过程中的刚度变化分布;最后,利用遗传算法,以工作空间和全局刚度为目标对机构结构参数进行优化分析,确定了最终的机构尺寸参数,为蜂窝灌注机器人应用奠定基础。

     

  • 图 1  串并混联灌注机器人系统

    Figure 1.  Serial-parallel perfusion robot system

    图 2  3PSS-PU机构运动简图

    Figure 2.  Kinematic sketch of 3PSS-PU mechanism

    图 3  中间被动支链各运动副的局部坐标系

    Figure 3.  Local coordinate system of every kinematic pair of middle passive link

    图 4  3PSS-PU并联机构的工作空间及其左、右视图

    Figure 4.  Workspace of 3PSS-PU parallel mechanism and its right and left side views

    图 5  k22θ2方向上随着θ2zm变化的刚度分布(θ1=0.3 rad)

    Figure 5.  Stiffness distribution of k22 along θ2 with change of θ2 and zm (when θ1=0.3 rad)

    图 6  k22θ2方向上随着θ1zm变化的刚度分布(θ2=0.3 rad)

    Figure 6.  Stiffness distribution of k22 along θ2 with change of θ1 and zm (when θ2=0.3 rad)

    图 7  k22θ2方向上随着θ1θ2变化的刚度分布(zm=210 mm)

    Figure 7.  Stiffness distribution of k22 along θ2 with change of θ1 and θ2 (when zm=210 mm)

    图 8  目标函数收敛图

    Figure 8.  Convergence graph of objective function

    表  1  3PSS-PU并联机构结构参数

    Table  1.   Structural parameters of 3PSS-PU parallel mechanism

    参数 数值
    Rm/mm 250
    li/mm 220
    φ1/(°) 60
    ϕ1/(°) 60
    simin/mm 0
    simax/mm 450
    αimin/(°) 50
    αimax/(°) 120
    βimin/(°) 50
    βimax/(°) 120
    下载: 导出CSV

    表  2  3PSS-PU并联机构优化设计参数

    Table  2.   Optimum design parameters of 3PSS-PU parallel mechanism

    组数 机构设计参数
    Rm/mm li/mm φ1/rad ϕ1/rad
    1 266.608 0 237.058 5 0.676 7 0.687 6
    2 269.573 9 237.284 5 0.634 9 0.733 3
    3 270.356 9 236.858 3 0.634 9 0.733 3
    4 267.452 5 237.519 3 0.676 7 0.687 6
    5 269.551 9 237.284 3 0.634 9 0.733 3
    6 269.551 9 237.284 3 0.676 7 0.687 6
    7 267.452 5 237.519 3 0.676 7 0.687 6
    8 267.199 7 237.557 2 0.634 9 0.733 3
    9 266.526 2 237.056 6 0.634 9 0.733 3
    10 269.573 4 237.284 4 0.634 9 0.733 3
    11 270.347 2 236.971 9 0.676 7 0.687 6
    12 267.452 5 237.519 3 0.634 9 0.733 3
    13 269.551 7 237.284 3 0.634 9 0.733 3
    14 269.329 7 237.303 0 0.676 7 0.687 6
    15 270.355 1 236.848 2 0.634 9 0.733 3
    16 269.562 5 237.280 2 0.634 9 0.733 3
    17 269.414 6 237.272 3 0.676 7 0.687 6
    18 267.473 7 237.515 3 0.676 7 0.687 6
    19 270.339 5 236.969 1 0.634 9 0.733 3
    20 267.452 5 237.519 3 0.634 9 0.733 3
    下载: 导出CSV

    表  3  3PSS-PU并联机构优化前后结构参数对比

    Table  3.   Comparison of initial and optimized structure parameters for 3PSS-PU parallel mechanism

    设计参数 初始值 优化值
    Rm/mm 250 267
    li/mm 220 237
    φ1/rad π/3 0.63
    ϕ1/rad π/3 0.73
    下载: 导出CSV

    表  4  3PSS-PU并联机构优化前后刚度参数对比

    Table  4.   Comparison of initial and optimized stiffness parameters for 3PSS-PU parallel mechanism

    刚度参数 初始值 优化值 倍数
    k11 1 272.95 4 023.15 3.160
    k22 6.244 17×107 1.102 13×108 1.765
    k33 9.851 90×105 9.015 62×106 9.151
    E 6.342 81×107 1.192 33×108 1.880
    S 929 775 1 069 132 1.150
    下载: 导出CSV
  • [1] ACKERMAN P K, BAKER A L, NEWQUIST C W. Thermal protection system: US 5322725[P]. 1994-06-21.
    [2] WU D F, ZHOU A F, ZHENG L M, et al.Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments[J].Theoretical & Applied Mechanics Letters, 2014, 4(2):19-26.
    [3] 程文礼, 袁超, 邱启艳, 等.航空用蜂窝夹层结构及制造工艺[J].航空制造技术, 2015, 476(7):94-98.

    CHENG W L, YUAN C, QIU Q Y, et al.Honeycomb sandwich structure and manufacturing process in aviation industry[J]. Aeronautical Manufacturing Technology, 2015, 476(7):94-98(in Chinese).
    [4] 张纪奎, 马志阳, 李学梅, 等.带防热层复合材料锥壳热固化变形的数值模拟[J].北京航空航天大学学报, 2013, 39(8):1037-1041.

    ZHANG J K, MA Z Y, LI X M, et al.Numerical simulation of cure deformation of composite taper shell with thermal protection layer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(8):1037-1041(in Chinese).
    [5] 郑力铭, 吴大方, 王岳武, 等.金属蜂窝板高温环境下的隔热性能试验与计算[J].北京航空航天大学学报, 2012, 38(6):731-735.

    ZHENG L M, WU D F, WANG Y W, et al.Experiment and numerical simulation on heat-shielding properties of metallic honeycomb panel in high temperature environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6):731-735(in Chinese).
    [6] LEE C S G, ZIEGLER M.Geometric approach in solving inverse kinematics of PUMA robots[J]. IEEE Transactions on Aerospace & Electronic Systems, 1984, 20(6):695-706.
    [7] OMODEI A, LEGNANI G, ADAMINI R.Three methodologies for the calibration of industrial manipulators:Experimental results on a SCARA robot[J].Journal of Robotic Systems, 2000, 17(6):291-307. doi: 10.1002/(ISSN)1097-4563
    [8] NUBIOLA A, BONEV I A.Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J].Robotics and Computer-Integrated Manufacturing, 2013, 29(1):236-245. doi: 10.1016/j.rcim.2012.06.004
    [9] FANG Y F, TSAI L W.Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators with identical limb structures[J].International Journal of Robotics Research, 2002, 21(9):799-810. doi: 10.1177/0278364902021009314
    [10] 房海蓉, 方跃法, 郭胜.四自由度对称并联机器人结构综合方法[J].北京航空航天大学学报, 2005, 31(3):346-350.

    FANG H R, FANG Y F, GUO S.Structural synthesis method for 4-degrees-of-freedom symmetrical parallel manipulators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3):346-350(in Chinese).
    [11] 张克涛, 方跃法, 房海蓉.基于变胞原理的一种探测车机构设计与分析[J].北京航空航天大学学报, 2007, 33(7):838-841.

    ZHANG K T, FANG Y F, FANG H R.Design and analysis of a rover mechanism based on the metamorphic principle[J].Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7):838-841(in Chinese).
    [12] PASHKEVICH A, CHABLAT D, WENGER P.Stiffness analysis of over-constrained parallel manipulators[J].Mechanism & Machine Theory, 2009, 44(5):966-982.
    [13] GAO Z, ZHANG D.Performance analysis, mapping, and multi-objective optimization of a hybrid robotic machine tool[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):423-433. doi: 10.1109/TIE.2014.2327008
    [14] GAO F, PENG B, ZHAO H, et al.A novel 5-DOF fully parallel kinematic machine tool[J].The International Journal of Advanced Manufacturing Technology, 2006, 31(1):201-207. doi: 10.1007/s00170-005-0171-1
    [15] 陈友东, 季旭东, 汤伟.管道喷涂机器人:结构与位姿调整[J].北京航空航天大学学报, 2015, 41(2):209-215.

    CHEN Y D, JI X D, TANG W.Pipeline spraying robot:Structure and pose adjustment[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2):209-215(in Chinese).
    [16] 于靖军, 毕树生, 宗光华, 等.面向生物工程的微操作机器人机构型综合研究[J].北京航空航天大学学报, 2001, 27(3):356-360.

    YU J J, BI S S, ZONG G H, et al.Research on type synthesis of micromanipulation mechanisms for bioengineering[J].Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(3):356-360(in Chinese).
    [17] KIM G S, SHIN H J, YOON J.Development of 6-axis force/moment sensor for a humanoid robot's intelligent foot[J].Sensors & Actuators A Physical, 2008, 2(3):122-133.
    [18] CHI Z, ZHANG D, XIA L, et al.Multi-objective optimization of stiffness and workspace for a parallel kinematic machine[J]. International Journal of Mechanics and Materials in Design, 2013, 9(3):281-293. doi: 10.1007/s10999-013-9219-9
    [19] KONAK A, COIT D W, SMITH A E.Multi-objective optimization using genetic algorithms:A tutorial[J].Reliability Engineering & System Safety, 2006, 91(9):992-1007.
    [20] HUANG H Z, QU N J, ZUO N M J. A new method of system reliability multi-objective optimization using genetic algorithms[C]//Proceedings of Reliability and Maintainability Symposium. Piscataway, NJ: IEEE Press, 2006: 278-283.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  745
  • HTML全文浏览量:  98
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-17
  • 录用日期:  2017-05-12
  • 网络出版日期:  2018-03-20

目录

    /

    返回文章
    返回
    常见问答