Modeling, system identification and validation of small rotorcraft-based unmanned aerial vehicle
-
摘要: 为实现超小型直升机的自动控制飞行,需建立较为精确的动力学模型.考虑机体、主旋翼/稳定杆和尾桨间的耦合对飞行动态特性的影响,建立了AF25B型超小型直升机的连续线性时不变系统模型.设计并配置了机载设备,完成在遥控飞行状态下的飞行数据采集与存储.通过时域系统辨识方法,辨识了直升机在悬停状态下的模型参数,并对辨识结果进行验证和分析,表明所建模型能充分反映该型直升机悬停状态下的动态特性.Abstract: In order to realize the flight control system of small rotorcraft-based unmanned aerial vehicles (RUAV), a precise dynamics model is needed. A time-domain system identification framework was presented for AF25B RUAV. The modeling process considered the influence of fuselage, main rotor/stabilizer bar system and coupled dynamic derivatives. Then the on-board sensor and control system were designed and configured. Based on the real flight data which gathered under the radio controlled(RC) hovering fly tests, a liner time-invariant system model was obtained through the time-domain system identification method. The identification result was analyzed and proved that model can reflect the dynamic characteristics in hovering condition fully.
-
[1] 高正,陈仁良.直升机飞行动力学[M].北京:科学出版社,2003:1-4 Gao Zheng,Chen Renliang.Helicopter flight dynamics[M].Beijing:Science Press,2003:1-4(in Chinese) [2] 张亚欧,吕恬生,杜建福.无人直升机纵、横向姿态建模与稳定控制[J].上海交通大学学报,2007,41(1):100-103 Zhang Yaou,Lü Tiansheng,Du Fujian.The pitch and roll attitude modeling and stable control of unmanned helicopter[J].Journal of Shanghai Jiaotong University,2007,41(1):100-103(in Chinese) [3] Konstant K,Carsten D.Mechanical model and control of an auton mous small sized helicopter with a stiff main rotor //Proceedings of 2004IEEE/RSJ International Conefernce on 1ntelliegnt Robots Systems.Sandal Japan:IEEE,2004:2469-2474 [4] Bernard M,Mark Tischler,Takeo Kanade.System identification of small-size unmanned helicopter dynamics[J].Journal of the American Helicopter Society,2002,47(1):50-63 [5] Bernard M.Modeling small-scale unmanned rotor-craft for advanced flight control design .Pittsburgh:Carnegie Mellon University,2001 [6] 杨一栋.直升机飞行控制[M].北京:国防工业出版社,2007 Yang Yidong.Flight control for helicopter[M].Beijing:National Defense Industry Press,2007:58-64(in Chinese) [7] Bernard M,Takeo Kanade.System identification modeling of a model-scale helicopter .Report CMU-RI-TR-00-03,2000 [8] Lennart L.System identification:theory for the user[M].2nd Edition.New Jersy:Prentice Hall,Inc,1999:199-203 [9] Raymond P.Helicopter performance,stability and control[M].Boston:PWS Engineering,1986:145-149 [10] 唐永哲.直升机控制系统设计[M].北京:国防工业出版社,2000:11-13 Tang Yongzhe.Helicopter control system design[M].Beijing:National Defense Industry Press,2000:11-13(in Chinese) [11] Osman B.Verification,validation and accreditation of simulation models //Sigrún Andradóttir.Proceedings of The 29th Conference on Winter Simulation.Georgia:John Steffey,1997:135-141 期刊类型引用(15)
1. 罗飞,王润峰. 基于YOLOv5水下目标检测算法研究与改进. 通信与信息技术. 2024(01): 34-40 . 百度学术
2. 陈宇梁,董绍江,孙世政,闫凯波. 改进YOLOv5s的弱光水下生物目标检测算法. 北京航空航天大学学报. 2024(02): 499-507 . 本站查看
3. 周玺兴,梁翔宇,胡佳宁,曾立华. 基于负压的浅海养殖海参捕捞系统设计与性能研究. 中国农机化学报. 2024(10): 94-99 . 百度学术
4. 杨婷,高武奇,王鹏,李晓艳,吕志刚,邸若海. 自动色阶与双向特征融合的水下目标检测算法. 激光与光电子学进展. 2023(06): 132-143 . 百度学术
5. 贾文娟,张孝薇,闫晨阳,李红志. 海洋牧场生态环境在线监测物联网技术研究. 海洋科学. 2022(01): 83-89 . 百度学术
6. 范刚,张亚,赵河明,李波. 水下机器人定位导航技术发展现状与分析. 兵器装备工程学报. 2022(03): 22-29 . 百度学术
7. 郝琨,王阔,王贝贝. 基于改进Mobilenet-YOLOv3的轻量级水下生物检测算法. 浙江大学学报(工学版). 2022(08): 1622-1632 . 百度学术
8. 高天铭,闫敬,尤康林,张良,林景胜,罗小元. 水下智能识别与自主抓取机器人设计与实现. 控制理论与应用. 2022(11): 2074-2083 . 百度学术
9. 王伟,李琰. 基于GIS的短时交通客流智能协调控制系统设计. 计算机测量与控制. 2021(01): 154-158 . 百度学术
10. 王晓鸣,吴高升. 基于单目视觉的水下机器人相对位姿精确控制. 水下无人系统学报. 2021(03): 299-307 . 百度学术
11. 高云,彭炜,周建慧. 机器人智能抓取未知目标位置深度识别仿真. 计算机仿真. 2021(08): 376-380 . 百度学术
12. 石少炜,石少敏. 基于虚拟现实的机器人工作状态智能监测系统. 自动化与仪器仪表. 2021(12): 172-175+180 . 百度学术
13. 魏哲,焦航. 纱筒搬运机器人的设计. 机械与电子. 2020(08): 76-80 . 百度学术
14. 翟国栋,任聪,王帅,岳中文,潘涛,季如佳. 多尺度特征融合的煤矿救援机器人目标检测模型. 工矿自动化. 2020(11): 54-58 . 百度学术
15. 于红. 水产动物目标探测与追踪技术及应用研究进展. 大连海洋大学学报. 2020(06): 793-804 . 百度学术
其他类型引用(21)
-

计量
- 文章访问数: 6266
- HTML全文浏览量: 318
- PDF下载量: 1753
- 被引次数: 36