留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无监督学习和粒子滤波的非视距信号检测

侯宁宁 李灯熬 赵菊敏

侯宁宁, 李灯熬, 赵菊敏等 . 基于无监督学习和粒子滤波的非视距信号检测[J]. 北京航空航天大学学报, 2022, 48(11): 2250-2258. doi: 10.13700/j.bh.1001-5965.2021.0077
引用本文: 侯宁宁, 李灯熬, 赵菊敏等 . 基于无监督学习和粒子滤波的非视距信号检测[J]. 北京航空航天大学学报, 2022, 48(11): 2250-2258. doi: 10.13700/j.bh.1001-5965.2021.0077
HOU Ningning, LI Deng'ao, ZHAO Juminet al. Non-line-of-sight signal detection based on unsupervised learning and particle filtering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2250-2258. doi: 10.13700/j.bh.1001-5965.2021.0077(in Chinese)
Citation: HOU Ningning, LI Deng'ao, ZHAO Juminet al. Non-line-of-sight signal detection based on unsupervised learning and particle filtering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2250-2258. doi: 10.13700/j.bh.1001-5965.2021.0077(in Chinese)

基于无监督学习和粒子滤波的非视距信号检测

doi: 10.13700/j.bh.1001-5965.2021.0077
基金项目: 

国家自然科学基金 61772358

国家重点研发计划 2018YFB2200900

详细信息
    通讯作者:

    李灯熬, E-mail: lidengao@tyut.edu.cn

  • 中图分类号: TN967.1

Non-line-of-sight signal detection based on unsupervised learning and particle filtering

Funds: 

National Natural Science Foundation of China 61772358

National Key R & D Program of China 2018YFB2200900

More Information
  • 摘要:

    全球卫星导航系统(GNSS)是目前应用最广泛的定位技术, 研究城市峡谷中的定位问题时, 由于高楼大厦的阻塞, 仍存在非视距传播导致的性能退化问题。为此, 提出了无监督学习粒子滤波(UL-PF)算法。在卫星信号分类阶段, 使用核k-means聚类的无监督学习分类方法, 在定位阶段, 使用通过聚类算法优化的粒子滤波方法。所提算法考虑了采样粒子在状态空间分布中的内在相似性, 探索在每个聚类中选择一个粒子作为重要粒子, 利用时间序列相关技术提高重采样粒子集的多样性。实验表明:在城市场景中, 所提算法的平均定位精度从传统算法的15 m提高到约5 m, 收敛时间从500 s缩短到200 s左右。

     

  • 图 1  基于核k-means算法的GNSS信号仿真分类结果

    Figure 1.  GNSS signal simulation classification results based on kernel k-means algorithm

    图 2  实验条件与数据采集

    Figure 2.  Experimental conditions and data acquisition

    图 3  位置候选点分布及分类结果

    Figure 3.  Distribution of location candidate points and classification results

    图 4  动态场景中剔除NLOS前后定位误差

    Figure 4.  Positioning error before and after NLOS elimination in dynamic scene

    图 5  不同环境下本文算法与传统算法定位误差对比

    Figure 5.  Comparison of positioning errors between the proposed algorithm and traditional algorithms in different environments

    图 6  不同算法的收敛时间和区位概率对比

    Figure 6.  Comparison of convergence time and location probability of different algorithms

    表  1  不同算法对比

    Table  1.   Comparison of different algorithms

    算法 运行时间/s LOS检测准确度/% NLOS检测准确度/% 正确率/% 错误率/%
    KNN 0.036 9 89.2 95.2 92.2 7.8
    NB 0.039 1 85.4 88.2 86.8 13.2
    DT 0.055 1 97.2 94.3 95.75 2.25
    LS-SVM 0.128 5 98.4 99.4 98.9 1.1
    核k-means 0.060 2 97.9 98.9 98.4 1.6
    下载: 导出CSV
  • [1] 曹建波, 王宇飞, 董军. 码相关参考波形技术在卫星导航信号中的多径抑制性能研究[J]. 现代导航, 2019, 10(2): 79-83. doi: 10.3969/j.issn.1674-7976.2019.02.001

    CAO J B, WANG Y F, DONG J. Research of multipath mitigation performance for CCRW technique in navigation signal[J]. Modern Navigation, 2019, 10(2): 79-83(in Chinese). doi: 10.3969/j.issn.1674-7976.2019.02.001
    [2] 孙旭升. GPS多径抑制算法研究报告[J]. 信息通信, 2017, 30(2): 13-14. doi: 10.3969/j.issn.1673-1131.2017.02.007

    SUN X S. Research report on GPS multipath suppression algorithm[J]. Information & Communications, 2017, 30(2): 13-14 (in Chinese). doi: 10.3969/j.issn.1673-1131.2017.02.007
    [3] 李惟, 朱云龙, 王峰, 等. GNSS多径信号模型及测高方法[J]. 北京航空航天大学学报, 2018, 44(6): 1239-1245. doi: 10.13700/j.bh.1001-5965.2017.0417

    LI W, ZHU Y L, WANG F, et al. GNSS multipath signal model and altimetry method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1239-1245(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0417
    [4] 王蓉, 陈思, 胡伟锋, 等. 卫星导航定位误差仿真分析[J]. 计算机测量与控制, 2018, 26(10): 264-268. doi: 10.16526/j.cnki.11-4762/tp.2018.10.057

    WANG R, CHEN S, HU W F, et al. Simulation and analysis of navigation satellite positioning error[J]. Computer Measurement & Control, 2018, 26(10): 264-268(in Chinese). doi: 10.16526/j.cnki.11-4762/tp.2018.10.057
    [5] 王冠宇, 孙蕊, 程琦. 城市峡谷中基于GPS双极化天线的定位方法[J]. 导航定位学报, 2020, 8(4): 13-19. doi: 10.3969/j.issn.2095-4999.2020.04.003

    WANG G Y, SUN R, CHENG Q. Positioning method based on GPS dual-polarized antenna in urban canyon environment[J]. Journal of Navigation and Positioning, 2020, 8(4): 13-19(in Chinese). doi: 10.3969/j.issn.2095-4999.2020.04.003
    [6] 何通, 刘怡俊. 基于地图拟合的GNSS接收机抗多径干扰技术[J]. 电脑知识与技术, 2019, 15(6): 261-262. https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201906108.htm

    HE T, LIU Y J. Anti-multipath interference technology of GNSS receiver based on map fitting[J]. Computer Knowledge and Technology, 2019, 15(6): 261-262(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNZS201906108.htm
    [7] YUAN Y, SHEN F, LI X D. GPS multipath and NLOS mitigation for relative positioning in urban environments[J]. Aerospace Science and Technology, 2020, 107(12): 106-128.
    [8] MARANÒ S, GIFFORD W M, WYMEERSCH H, et al. NLOS identification and mitigation for localization based on UWB experimental data[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(7): 1026-1035. doi: 10.1109/JSAC.2010.100907
    [9] YOZEVITCH R, MOSHE B B, WEISSMAN A. A robust GNSS LOS/NLOS signal classifier[J]. Navigation, 2016, 63(4): 429-442.
    [10] ZHU F, BA T E, ZHANG Y, et al. Terminal location method with NLOS exclusion based on unsupervised learning in 5G-LEO satellite communication systems[J]. International Journal of Satellite Communications and Networking, 2020, 38(5): 425-436.
    [11] FAN J C, AWAN A S. Non-line-of-sight identification based on unsupervised machine learning in ultra wideband systems[J]. IEEE Access, 2019, 7: 32464-32471.
    [12] 陈唯实, 闫军, 李敬. 基于Rao-Blackwellized蒙特卡罗数据关联的检测跟踪联合优化[J]. 北京航空航天大学学报, 2018, 44(4): 700-708. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201804007.htm

    CHEN W S, YAN J, LI J. Joint optimization of detection and tracking with Rao-Blackwellized Monte Carlo data association[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 700-708(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201804007.htm
    [13] 李凯锋, 王保良, 黄志尧, 等. K-均值聚类在CCERT系统流型辨识中的应用[J]. 北京航空航天大学学报, 2017, 43(11): 2280-2285. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201711014.htm

    LI K F, WANG B L, HUANG Z Y, et al. Application of K-means clustering in flow pattern identification of CCERT system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2280-2285(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201711014.htm
    [14] NING F S, CHEN Y C. Combining a modified particle filter method and indoor magnetic fingerprint map to assist pedestrian dead reckoning for indoor positioning and navigation[J]. Sensors (Basel, Switzerland), 2019, 20(1): 185-193.
    [15] DE MIGUEL M Á, GARCÍA F, ARMINGOL J M. Improved LiDAR probabilistic localization for autonomous vehicles using GNSS[J]. Sensors (Basel, Switzerland), 2020, 20(11): 139-145.
    [16] YANG W M, SONG L, TEE C A T, et al. Unsupervised learning grouping-based resampling for particle filters[J]. IEEE Access, 2019, 7: 127265-127275.
    [17] LI T C, SATTAR T P, SUN S D. Deterministic resampling: Unbiased sampling to avoid sample impoverishment in particle filters[J]. Signal Processing, 2012, 92(7): 1637-1645.
    [18] TZORTZIS G, LIKAS A. The global kernel k-means clustering algorithm[C]//2008 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2008: 10365371.
    [19] AGRAWAL A, GUPTA H. Global K-means (GKM) clustering algorithm: A survey[J]. International Journal of Computer Applications, 2013, 79(2): 20-24.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  76
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 录用日期:  2021-04-23
  • 网络出版日期:  2021-05-11
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答