留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机旋转表面结冰数值模拟

郭琦 申晓斌 林贵平 张世娟

郭琦, 申晓斌, 林贵平, 等 . 飞机旋转表面结冰数值模拟[J]. 北京航空航天大学学报, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
引用本文: 郭琦, 申晓斌, 林贵平, 等 . 飞机旋转表面结冰数值模拟[J]. 北京航空航天大学学报, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
GUO Qi, SHEN Xiaobin, LIN Guiping, et al. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081(in Chinese)
Citation: GUO Qi, SHEN Xiaobin, LIN Guiping, et al. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081(in Chinese)

飞机旋转表面结冰数值模拟

doi: 10.13700/j.bh.1001-5965.2021.0081
基金项目: 

国家自然科学基金 51806008

结冰与防除冰重点实验室开放课题 IADL20200307

详细信息
    通讯作者:

    申晓斌, E-mail: shenxiaobin@buaa.edu.cn

  • 中图分类号: V211.3

Numerical simulation of icing on aircraft rotating surfaces

Funds: 

National Natural Science Foundation of China 51806008

Funding for the Open Project of the Key Laboratory of Icing and Anti/De-icing IADL20200307

More Information
  • 摘要:

    在Shallow-Water结冰热力学模型的基础上, 搭建了一套适用于三维旋转表面的非稳态结冰模型, 采用Jacobi迭代法和Gauss-Seidel迭代法对表面结冰进行非稳态迭代求解。用所提模型对简化后的旋转桨叶模型进行计算, 并与FENSAP软件结果进行对比, 验证了所提模型的准确性, 分析了转速、水滴直径和液态水含量等因素对旋转表面结冰冰形和水膜流动的影响。结果表明:随着转速的增加, 结冰范围和水膜覆盖范围偏移愈加明显;结冰范围和水膜覆盖范围随水滴直径增长逐渐增加, 水膜厚度也逐渐增大;结冰厚度和水膜厚度随液态水含量增长而相应增加, 水膜覆盖范围也明显变大。

     

  • 图 1  旋转表面水膜受力分析示意图

    Figure 1.  Schematic diagram of force analysis of water film on rotating surface

    图 2  控制体质量守恒示意图

    Figure 2.  Schematic diagram of mass conservation of control volume

    图 3  控制体能量守恒示意图

    Figure 3.  Schematic diagram of energy conservation of control volume

    图 4  旋转表面结冰求解流程

    Figure 4.  Flow chart for solving icing on rotating surfaces

    图 5  旋转圆柱模型示意图

    Figure 5.  Schematic diagram of rotating cylinder model

    图 6  旋转圆柱三维冰形

    Figure 6.  Three-dimensional ice shape of rotating cylinder

    图 7  结冰冰形随时间变化

    Figure 7.  Ice shape changing over time

    图 8  水膜厚度随时间变化

    Figure 8.  Water film thickness changing over time

    图 9  本文模型和FENSAP冰形结果对比

    Figure 9.  Comparison of ice shape between the proposed model and FENSAP

    图 10  本文模型和FENSAP水膜厚度对比

    Figure 10.  Comparison of water film thickness between the proposed model and FENSAP

    图 11  结冰冰形随转速变化

    Figure 11.  Ice shape changing with speed

    图 12  水膜厚度随转速变化

    Figure 12.  Water film thickness changing with speed

    图 13  结冰冰形随水滴直径变化

    Figure 13.  Ice shape changing with droplet diameter

    图 14  水膜厚度随水滴直径变化

    Figure 14.  Water film thickness changing with droplet diameter

    图 15  结冰冰形随液态水含量变化

    Figure 15.  Ice shape changing with liquid water content

    图 16  水膜厚度随液态水含量变化

    Figure 16.  Water film thickness changing with liquid water content

  • [1] CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75(4): 353-385.
    [2] SHEN X B, LIN G P, YU J, et al. Three-dimensional numerical simulation of ice accretion at the engine inlet[J]. Journal of Aircraft, 2013, 50(2): 635-642. doi: 10.2514/1.C031992
    [3] DU Y X, GUI Y W, XIAO C H, et al. Investigation on heat transfer characteristics of aircraft icing including runback water[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 3702-3707. doi: 10.1016/j.ijheatmasstransfer.2010.04.021
    [4] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42. doi: 10.2514/8.2520
    [5] GHENAI C, KULKARNI S, LIN C X. Validation of LEWICE 2.2 icing software code: Comparison with LEWICE 2.0 and experimental data[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005: 1249.
    [6] MYERS T G. Extension to the messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2): 211-218. doi: 10.2514/2.1312
    [7] BOURGAULT Y, BEAUGENDRE H, HABASHI W G. Development of a Shallow-Water icing model in FENSAP-ICE[J]. Journal of Aircraft, 2000, 37(4): 640-646. doi: 10.2514/2.2646
    [8] 易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11): 2152-2158. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201011008.htm

    YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2152-2158(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201011008.htm
    [9] 申晓斌, 林贵平, 卜雪琴, 等. 发动机进气道短舱前缘结冰三维模拟研究[J]. 航空学报, 2013, 34(3): 517-524. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303006.htm

    SHEN X B, LIN G P, BU X Q, et al. Three-dimensional simulation research on ice shape at engine inlet nacelle front[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 517-524(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201303006.htm
    [10] 曹广州, 吉洪湖, 胡娅萍, 等. 模拟飞机迎风面三维积冰的数学模型[J]. 航空动力学报, 2011, 26(9): 1953-1963. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201109008.htm

    CAO G Z, JI H H, HU Y P, et al. An icing model for simulating three dimensional ice accretion on the upwind surfaces of a plane[J]. Journal of Aerospace Power, 2011, 26(9): 1953-1963(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201109008.htm
    [11] CAO Y H, HUANG J S. New method for direct numerical simulation of three-dimensional ice accretion[J]. Journal of Aircraft, 2014, 52(2): 650-659.
    [12] 雷梦龙, 常士楠, 杨波. 基于Myers模型的三维结冰数值仿真[J]. 航空学报, 2018, 39(9): 121952-121962. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201809003.htm

    LEI M L, CHANG S N, YANG B. Three-dimensional numerical simulation of icing using Myers model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 121952-121962(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201809003.htm
    [13] BAIN J, CAJIGAS J, SANKAR L, et al. Prediction of rotor blade ice shedding using empirical methods[C]//AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7985.
    [14] REID T, BARUZZI G, OZCER I, et al. FENSAP-ICE simulation of icing on wind turbine blades, Part 1: Performance degradation[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 750.
    [15] REID T, BARUZZI G, OZCER I, et al. FENSAP-ICE simulation of icing on wind turbine blades, Part 2: Ice protection system design[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013: 751.
    [16] SWITCHENKO D, HABASHI W, REID T, et al. FENSAP-ICE simulation of complex wind turbine icing events, and comparison to observed performance data[C]// 32nd ASME Wind Energy Symposium, 2014: 1399.
    [17] WANG Z Z, ZHU C L. Numerical simulation of three-dimensional rotor icing in hovering flight[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(3): 545-555.
    [18] DONG W, ZHU J J, ZHENG M, et al. Numerical study of ice accretion on rotating aero-engine cone[C]//29th Congress of the International Council of the Aeronautical Sciences, 2014.
    [19] 赵秋月, 董威, 朱剑鋆. 发动机旋转整流帽罩的水滴撞击特性分析[J]. 燃气涡轮试验与研究, 2011, 24(4): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201104009.htm

    ZHAO Q Y, DONG W, ZHU J J. Droplets impinging characteristic analysis of the rotating fairing of aero-engine[J]. Gas Turbine Experiment and Research, 2011, 24(4): 32-35(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-RQWL201104009.htm
    [20] 吴孟龙, 常士楠, 冷梦尧, 等. 基于欧拉法模拟旋转帽罩水滴撞击特性[J]. 北京航空航天大学学报, 2014, 40(9): 1263-1267. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201409017.htm

    WU M L, CHANG S N, LENG M Y, et al. Simulation of droplet impingement characteristics of spinner based on Eulerian method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9): 1263-1267(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201409017.htm
    [21] ROTHMAYER A, TSAO J. Water film runback on an airfoil surface[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: 237.
    [22] 申晓斌, 张志强, 林贵平, 等. 旋转部件复杂表面水滴撞击计算[J]. 空气动力学学报, 2016, 34(6): 709-713. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201606003.htm

    SHEN X B, ZHANG Z Q, LIN G P, et al. Droplet impingement calculation on complex suface of rotating part[J]. Acta Aerodynamica Sinica, 2016, 34(6): 709-713(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201606003.htm
  • 加载中
图(16)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  121
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 录用日期:  2021-05-07
  • 网络出版日期:  2021-05-12
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答