留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于径向基函数代理模型的M形杆刚度优化

杨慧 范硕硕 王岩 刘荣强 肖洪

杨慧, 范硕硕, 王岩, 等 . 基于径向基函数代理模型的M形杆刚度优化[J]. 北京航空航天大学学报, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091
引用本文: 杨慧, 范硕硕, 王岩, 等 . 基于径向基函数代理模型的M形杆刚度优化[J]. 北京航空航天大学学报, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091
YANG Hui, FAN Shuoshuo, WANG Yan, et al. Stiffness optimization of M-shaped boom based on radial basis function surrogate model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091(in Chinese)
Citation: YANG Hui, FAN Shuoshuo, WANG Yan, et al. Stiffness optimization of M-shaped boom based on radial basis function surrogate model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2121-2129. doi: 10.13700/j.bh.1001-5965.2021.0091(in Chinese)

基于径向基函数代理模型的M形杆刚度优化

doi: 10.13700/j.bh.1001-5965.2021.0091
基金项目: 

安徽省自然科学基金 2108085QE221

国家自然科学基金 51975001

国家自然科学基金 51835002

国家自然科学基金 52105013

机器人技术与系统国家重点实验室开放基金 SKLRS-2020-KF-16

详细信息
    通讯作者:

    杨慧, E-mail: huiyang_0431@163.com

  • 中图分类号: V214.2

Stiffness optimization of M-shaped boom based on radial basis function surrogate model

Funds: 

Anhui Provincial Natural Science Foundation 2108085QE221

National Natural Science Foundation of China 51975001

National Natural Science Foundation of China 51835002

National Natural Science Foundation of China 52105013

Open Fundings of State Key Laboratory of Robotics and System SKLRS-2020-KF-16

More Information
  • 摘要:

    在航天任务的执行中, 超弹性杆主要用于大型空间可展天线和太阳帆等展开和支撑。为了提高超弹性杆在展开状态下的刚度, 提出了一种新型M形超弹性杆, 并对M形超弹性杆的刚度进行了研究。采用ABAQUS建立M形超弹性杆的弯曲、压缩和扭转的有限元模型, 利用显示动力学法对屈曲过程进行非线性数值模拟。采用全因子法进行实验设计, 利用径向基函数(RBF)建立M形超弹性杆屈曲过程性能参数的代理模型。以弯曲刚度、扭转刚度和压缩刚度为优化目标, 以质量为约束, 选取黏结段长度和内侧带簧片圆心角为自变量建立优化模型。采用粒子群(PSO)算法进行M形超弹性杆参数优化, 得到最优刚度下, 黏结段长度为7.894 5 mm, 圆心角为26°, 并且得到刚度随其变化规律。

     

  • 图 1  M形杆缠绕几何示意图

    Figure 1.  Geometric schematic diagram of M boom coiling

    图 2  M形杆各层材料铺设布置图

    Figure 2.  Material laying layout of each layer of M boom

    图 3  M形杆有限元模型

    Figure 3.  Finite element model of M boom

    图 4  M形杆绕x轴弯曲的应力云图和力矩曲线

    Figure 4.  Cloud chart of stress and bending moment curve of M boom around x-axis

    图 5  M形杆绕y轴弯曲的应力云图和力矩曲线

    Figure 5.  Cloud chart of stress and bending moment curve of M boom around y-axis

    图 6  M形杆绕z轴扭转的应力云图和力矩曲线

    Figure 6.  Cloud chart of stress and torsion moment curve of M boom around z-axis

    图 7  M形杆沿z轴压缩的应力云图和反作用力曲线

    Figure 7.  Stress cloud diagram and reaction force curves of M boom compressed along z-axis

    图 8  EIx(h, θ2)响应面

    Figure 8.  Response surface of EIx(h, θ2)

    图 9  EIy(h, θ2)响应面

    Figure 9.  Response surface of EIy(h, θ2)

    图 10  GJz(h, θ2)响应面

    Figure 10.  Response surface of GJz(h, θ2)

    图 11  EAz(h, θ2)响应面

    Figure 11.  Response surface of EAz(h, θ2)

    表  1  T800材料属性

    Table  1.   Material properties of T800

    材料属性 T800 黏结胶
    纵向弹性模量E1/MPa 150 000
    横向弹性模量E2=E3/MPa 7 000 60 000
    剪切模量G12=G13/MPa 7 000
    面内剪切模量G23/MPa 4 500
    泊松比υ 0.3 0.3
    密度ρ /(kg·m-3) 2 500 1 600
    下载: 导出CSV

    表  2  参考点RP2在不同情况下的边界条件

    Table  2.   Reference point RP2 boundary conditions under different conditions

    约束 x轴弯曲 y轴弯曲 z轴扭转 沿z轴正向压缩
    UX 0 释放约束 释放约束 释放约束
    UY 释放约束 0 释放约束 释放约束
    UZ 释放约束 释放约束 0 施加位移载荷
    RX 施加旋转载荷 0 0 0
    RY 0 施加旋转载荷 0 0
    RZ 0 0 施加旋转载荷 0
    下载: 导出CSV

    表  3  样本点

    Table  3.   Sample points

    序号 h/mm θ2/(°) EIx(h, θ2)/(N·m2·rad-1) EIy(h, θ2)/(N·m2·rad-1) GJz(h, θ2)/(N·m2·rad-1) EAz(h, θ2)/(N·mm-1)
    1 5 22 16.525 8.800 0.022 318.836
    2 5 23 17.764 10.718 0.026 322.861
    3 5 24 19.018 12.579 0.031 314.631
    4 5 25 20.672 14.756 0.037 322.566
    5 5 26 21.779 17.296 0.044 341.485
    6 6 22 20.299 10.467 0.028 342.641
    7 6 23 21.683 12.250 0.031 352.375
    8 6 24 23.548 13.527 0.036 359.440
    9 6 25 24.680 16.322 0.045 354.424
    10 6 26 26.529 19.273 0.051 349.309
    11 7 22 24.826 11.736 0.030 362.863
    12 7 23 26.121 14.097 0.038 336.068
    13 7 24 28.263 15.904 0.043 386.556
    14 7 25 30.448 18.814 0.049 387.839
    15 7 26 31.960 21.919 0.059 417.498
    16 8 22 31.014 13.979 0.035 390.809
    17 8 23 24.585 16.280 0.039 391.156
    18 8 24 25.897 19.031 0.050 389.042
    19 8 25 35.451 22.181 0.059 412.499
    20 8 26 36.913 25.155 0.068 398.496
    21 9 22 34.444 16.144 0.042 418.356
    22 9 23 28.561 18.814 0.050 396.581
    23 9 24 30.862 21.860 0.057 421.409
    24 9 25 39.797 24.364 0.072 404.325
    25 9 26 43.121 24.267 0.079 430.254
    26 10 22 42.957 18.604 0.051 417.984
    27 10 23 42.714 21.545 0.057 426.818
    28 10 24 46.798 24.402 0.064 440.339
    29 10 25 47.374 28.437 0.081 454.123
    30 10 26 51.486 32.035 0.094 470.183
    下载: 导出CSV

    表  4  径向基函数代理模型核函数中常数c的取值

    Table  4.   Values of constant c in kernel function of RBFs surrogate model

    目标量 c
    EIx 1
    EIy 0.3
    GJz 0.3
    EAz 0.3
    下载: 导出CSV

    表  5  误差测试样本点

    Table  5.   Sample points of relative errors

    序号 h/mm θ2/(°) 有限元结果 代理模型结果 相对误差E/%
    EIx(h, θ2)/(N·m2·rad-1) EIy(h, θ2)/(N·m2·rad-1) EIx(h, θ2)/(N·m2·rad-1) EIy(h, θ2)/(N·m2·rad-1) EIx(h, θ2) EIy(h, θ2)
    1 6 26 26.529 19.273 26.120 19.259 -1.542 -0.073
    2 7 24 28.263 15.904 27.329 16.169 -3.305 1.666
    3 7 26 31.960 21.919 32.612 22.091 2.040 0.785
    4 8 22 31.014 13.979 29.105 14.097 -6.155 0.844
    5 8 26 36.913 25.155 38.292 25.342 3.736 0.743
    序号 h/mm θ2/(°) 有限元结果 代理模型结果 相对误差E/%
    GJz(h, θ2)/(N·m2·rad-1) EAz(h, θ2)/(N·mm-1) GJz(h, θ2)/(N·m2·rad-1) EAz(h, θ2)/(N·mm-1) GJz(h, θ2) EAz(h, θ2)
    1 6 26 0.051 4 349.309 0.051 0 367.851 -0.778 5.308
    2 7 24 0.043 4 386.556 0.042 9 366.866 -1.152 -5.094
    3 7 26 0.059 3 417.498 0.058 4 400.586 -1.518 -4.051
    4 8 22 0.034 8 390.809 0.035 2 395.578 1.149 1.220
    5 8 26 0.068 2 398.496 0.067 7 420.565 -0.733 5.538
    下载: 导出CSV

    表  6  目标量和约束量的比例因子和权重

    Table  6.   Scale factors and weights of objective and constraint quantities

    目标量 Si Wi
    EIx 1 1.2
    EIy 1 2
    GJz 1 1 000
    EAz 1 0.1
    M0 1 1.5
    下载: 导出CSV

    表  7  Pareto设计点

    Table  7.   Pareto points of design

    序号 h/mm θ2/(°) M0/g EIx(h, θ2)/(N·m2·rad-1) EIy(h, θ2)/(N·m2·rad-1) GJz(h, θ2)/(N·m2·rad-1) EAz(h, θ2)/(N·mm-1)
    1 7.970 7 25.727 7 24.932 7 37.814 4 24.341 7 0.065 0 415.960 8
    2 7.894 5 26 24.911 4 37.794 9 24.994 1 0.066 6 419.362 2
    下载: 导出CSV

    表  8  最优设计点

    Table  8.   Optimal point of design

    结果 对应刚度 数值
    有限元 EIx(h, θ2)/(N·m2·rad-1) 36.286 2
    EIy(h, θ2)/(N·m2·rad-1) 24.828 4
    GJz(h, θ2)/(N·m2·rad-1) 0.065 1
    EAz(h, θ2)/(N·mm-1) 430.808 6
    代理模型 EIx(h, θ2)/(N·m2·rad-1) 37.794 9
    EIy(h, θ2)/(N·m2·rad-1) 24.994 1
    GJz(h, θ2)/(N·m2·rad-1) 0.066 6
    EAz(h, θ2)/(N·mm-1) 419.362 2
    相对误差E/% EIx(h, θ2) 4.16
    EIy(h, θ2) 0.67
    GJz(h, θ2) 2.30
    EAz(h, θ2) -2.66
    下载: 导出CSV
  • [1] SICKINGER C, HERBECK L. Deployment strategies, analyses and tests for the CFRP booms of a solar sail[C]//European Conference on Spacecraft Structures, Materials and Mechanical Testing, 2002.
    [2] HU Y, CHEN W J, GAO J F, et al. A study of flattening process of deployable composite thin-walled lenticular tubes under compress and tension[J]. Composite Structure, 2017, 168: 164-177. doi: 10.1016/j.compstruct.2017.02.029
    [3] BAI J B, CHEN D, XIONG J J, et al. Folding analysis for thin-walled deployable composite[J]. Acta Astronautica, 2019, 159: 622-636. doi: 10.1016/j.actaastro.2019.02.014
    [4] BANIK J, MUTPHEY T. Performance validation of the triangular rollable and collapsible mast[C]//24th Annual AIAA/USU Conferenceon Small Satellites, 2010: 1-8.
    [5] YANG H, LIU R Q, WANG Y, et al. Experiment and multiobjective optimization design of tape-spring hinges[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1373-1384. doi: 10.1007/s00158-014-1205-9
    [6] STABILE A, LAURENZI S. Coiling dynamic analysis of thin-walled composite deployable boom[J]. Composite Structures, 2014, 113: 429-436. doi: 10.1016/j.compstruct.2014.03.043
    [7] HOSKIN A, VIQUERAT A, AGLIETTI G S. Tip force during blossoming of coiled deployable booms[J]. International Journal of Solids and Structures, 2017, 118-119: 58-69. doi: 10.1016/j.ijsolstr.2017.04.023
    [8] MALLIKARACHCHI H M Y C, PELLEGRINO S. Deployment dynamics of ultrathin composite booms with tape-spring hinges[J]. Journal of Spacecraft and Rockets, 2014, 51(2): 604-613. doi: 10.2514/1.A32401
    [9] MALLIKARACHCHI H M Y C, PELLEGRINO S. Design of ultrathin composite self-deployable booms[J]. Journal of Spacecraft and Rockets, 2014, 51(6): 1811-1821. doi: 10.2514/1.A32815
    [10] MALLIKARACHCHI H M Y C. Predicting mechanical properties of thin woven carbon fiber reinforced laminates[J]. Thin-Walled Structures, 2019, 135: 297-305. doi: 10.1016/j.tws.2018.11.016
    [11] CHU Z Y, LEI Y A. Design theory and dynamic analysis of a deployable boom[J]. Mechanism and Machine Theory, 2014, 71: 126-141. doi: 10.1016/j.mechmachtheory.2013.09.009
    [12] CHU Z Y, LEI Y A, LI D. Dynamics and robust adaptive control of a deployable boom for a space probe[J]. Acta Astronautica, 2014, 97: 138-150. doi: 10.1016/j.actaastro.2014.01.009
    [13] CAI J G, ZHOU Y, WANG X Y, et al. Dynamic analysis of a cylindrical boom based on Miura Origami[J]. Steel and Composite Structures, 2018, 28(5): 607-615.
    [14] ANGELETTI F, GASBARRI P, SABATINI M. Optimal design and robust analysis of a net of active devices for microvibration control of an on-orbit large space antenna[J]. Acta Astronautica, 2019, 164: 241-253. doi: 10.1016/j.actaastro.2019.07.028
    [15] CHEN W J, FANG G Q, HU Y. An experimental and numerical study of flattening and wrapping process of deployable composite thin-walled lenticular tubes[J]. Thin-Walled Structures, 2017, 111: 38-47. doi: 10.1016/j.tws.2016.11.009
    [16] BESSA M A, PELLEGRINO S. Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization[J]. International Journal of Solids and Structures, 2018, 139-140: 174-188. doi: 10.1016/j.ijsolstr.2018.01.035
    [17] BESSA M A, BOSTANABAD R, LIU Z, et al. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 633-667. doi: 10.1016/j.cma.2017.03.037
    [18] ROYBAL F A, BANIK J A, MURPHEY T W. Development of an elastically deployable boom for tensioned planar structures: AIAA 2007-1838[R]. Reston: AIAA, 2007.
    [19] YANG H, LU F S, GUO H W, et al. Design of a new N-shape composite ultra-thin deployable boom in the post-buckling range using response surface method and optimization[J]. IEEE Access, 2019, 7: 129659-129665. doi: 10.1109/ACCESS.2019.2934744
    [20] 谢进德. 代理模型技术的研究及其在汽车抗撞性中的应用[D]. 长沙: 湖南大学, 2013.

    XIE J D. Research on surrogate model technology and its application in vehicle crashworthiness[D]. Changsha: Hunan University, 2013(in Chinese).
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  328
  • HTML全文浏览量:  120
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 录用日期:  2021-06-06
  • 网络出版日期:  2021-06-21
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答