留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NO快速检测光腔结构设计与光路仿真

李文 蔡永青 陈梦凡 刘鹏

李文, 蔡永青, 陈梦凡, 等 . NO快速检测光腔结构设计与光路仿真[J]. 北京航空航天大学学报, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105
引用本文: 李文, 蔡永青, 陈梦凡, 等 . NO快速检测光腔结构设计与光路仿真[J]. 北京航空航天大学学报, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105
LI Wen, CAI Yongqing, CHEN Mengfan, et al. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105(in Chinese)
Citation: LI Wen, CAI Yongqing, CHEN Mengfan, et al. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105(in Chinese)

NO快速检测光腔结构设计与光路仿真

doi: 10.13700/j.bh.1001-5965.2021.0105
基金项目: 

国家自然科学基金 51205005

北京市科技创新服务能力建设资助项目 PXM2017-014212-000013

详细信息
    通讯作者:

    李文, E-mail: lw@ncut.edu.cn

  • 中图分类号: O433.1

Optical path simulation and design of NO rapid detection optical cavity structure

Funds: 

National Natural Science Foundation of China 51205005

Beijing Science and Technology Innovation Service Ability Building Supporting Project PXM2017-014212-000013

More Information
  • 摘要:

    根据NO与臭氧的化学发光反应机理, 提出了一种基于化学发光反应检测原理的用于NO气体快速检测的新型圆柱全反射S型光腔结构。该结构以圆柱内壁全反射S型结构为光腔模型, 采用圆柱体光源作为光散射元件, 将化学发光光线最大效率地汇聚到探测器的感光面, 增强了NO浓度测量信号, 提高了检测精度。采用光学软件ZEMAX对所提模型进行光路仿真, 通过对比分析表明, S型光腔采集光路对化学发光的采集效率为36.6%。通过实验验证, 结果表明, 在一定浓度范围内NO气体浓度与化学反应发光强度线性相关度为0.999 2, 在量程0‰~2.5‰的范围内, 检出限为0.001‰。所提模型结构简单, 满足国家标准, 为尾气在线检测提供了一种实用的设计方案。

     

  • 图 1  广口圆柱模型

    Figure 1.  Cylindrical wide-mouth model

    图 2  光学简化仿真模型

    Figure 2.  Optical simplified simulation model

    图 3  矩形探测器成像图

    Figure 3.  Rectangular detector imaging

    图 4  透镜聚焦式模型

    Figure 4.  Lens focusing model

    图 5  加透镜的矩形探测器成像图

    Figure 5.  Rectangular detector imaging with Lens

    图 6  圆柱全反射式模型

    Figure 6.  Cylindrical total reflection model

    图 7  内壁全反射的矩形探测器成像图

    Figure 7.  Rectangular detector imaging with total reflection of inner wall

    图 8  S型光腔结构3D模型

    Figure 8.  3D model of S-shaped optical cavity structure

    图 9  S型光腔结构成像图

    Figure 9.  S-shaped optical cavity structure imaging

    图 10  最终仿真结果

    Figure 10.  Final simulation result

    图 11  双通道氮氧化物分析气路流程

    Figure 11.  Flow chart of two-channel NOx analysis gas path

    图 12  NO检测工作曲线

    Figure 12.  Working curve of nitric oxide detection

    表  1  工作曲线相关参数

    Table  1.   Work curve related parameters

    参数 方法或数值
    检测方法 化学发光法
    线性范围/‰ 0~2.5
    回归方程 y=0.001 26x-0.019 78
    相关系数 0.999 2
    最低检出限/‰ 0.001
    下载: 导出CSV

    表  2  重复性测试结果

    Table  2.   Repeatability test results

    测试序号 NO浓度/‰
    1 1.010
    2 1.007
    3 0.985
    4 1.021
    5 1.009
    6 1.005
    平均值/‰ 1.006
    标准偏差/% 1.18
    下载: 导出CSV
  • [1] 刘萍, 简家文, 陈志芸. 基于集成神经网络的汽车尾气检测系统设计[J]. 环境工程学报, 2016, 10(4): 1883-1887. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201604049.htm

    LIU P, JIAN J W, CHEN Z Y. Design of automobile exhaust gas detection system based on integrated neural network[J]. Journal of Environmental Engineering, 2016, 10(4): 1883-1887 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201604049.htm
    [2] 李世武, 王琳虹, 郭栋, 等. 基于机动车排放的自适应信号控制模型[J]. 华南理工大学学报(自然科学版), 2011, 39(3): 101-106. doi: 10.3969/j.issn.1000-565X.2011.03.020

    LI S W, WANG L H, GUO D, et al. Adaptive signal control model based on vehicle emission[J]. Journal of South China University of Technology(Natural Science Edition), 2011, 39(3): 101-106(in Chinese). doi: 10.3969/j.issn.1000-565X.2011.03.020
    [3] 罗学科, 刘鹏, 李文, 等. 基于CLD机动车尾气NOx排放快速在线检测研究[J]. 环境科学与技术, 2020, 43(9): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202009017.htm

    LUO X K, LIU P, LI W, et al. Research on rapid on-line detection of NOx emission from motor vehicle exhaust based on CLD[J]. Environmental Science and Technology, 2020, 43(9): 119-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS202009017.htm
    [4] 马清芝, 车胜新. 我国汽车污染物排放标准制、修订发展一瞥[J]. 机械工业标准化与质量, 2006(3): 14-16. doi: 10.3969/j.issn.1007-6905.2006.03.005

    MA Q Z, CHE S X. A glance at the development and revision of my country's automobile pollutant emission standards[J]. Standardization and Quality of Machinery Industry, 2006(3): 14-16(in Chinese). doi: 10.3969/j.issn.1007-6905.2006.03.005
    [5] 环境保护部, 国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法(中国第六阶段): GB18352.6—2016[S]. 北京: 中国环境科学出版社, 2020.

    Ministry of Environmental Protection, Gneral Administration of Quality Supervision, Inspection and Quarantine. Limits and measurement methods for emissions from light-duty vehicles(CHINA 6): GB18352.6—2016[S]. Beijing: China Environmental Science Press, 2020(in Chinese).
    [6] 吴盛阳, 胡仁志, 谢品华, 等. 基于腔衰荡光谱技术(CRDS)对大气总活性氮氧化物(NOy)的实时测量[J]. 光谱学与光谱分析, 2020, 40(6): 1661-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202006001.htm

    WU S Y, HU R Z, XIE P H, et al. Real-time measurement of atmospheric total active nitrogen oxides (NOy) based on cavity ring-down spectroscopy (CRDS)[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1661-1667(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202006001.htm
    [7] 李杭. 微型NO化学发光分析仪的研制与应用[D]. 合肥: 中国科学技术大学, 2019.

    LI H. Development and application of miniature NO chemiluminescence analyzer[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [8] 孟晓辰, 郝群, 朱秋东, 等. 基于Zemax的部分补偿透镜的优化设计[J]. 光学学报, 2011, 31(6): 222-228. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201106041.htm

    MENG X C, HAO Q, ZHU X D, et al. Optimal design of partial compensation lens based on Zemax[J]. Acta Optica Sinica, 2011, 31(6): 222-228(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201106041.htm
    [9] 苏杭, 王桂梅, 杨立洁. 大气痕量硫荧光采集光路设计与仿真[J]. 激光与光电子学进展, 2020, 57(5): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202005015.htm

    SU H, WANG G M, YANG L J. Design and simulation of light path for chemiluminescence collection of atmospheric trace sulfur[J]. Progress in Laser and Optoelectronics, 2020, 57(5): 144-149(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202005015.htm
    [10] 李俊纬, 倪屹, 郭瑜, 等. 基于凹面光栅的特定蛋白分析仪结构设计及性能分析[J]. 光学学报, 2019, 39(8): 380-388. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908046.htm

    LI J W, NI Y, GUO Y, et al. Structure design and performance analysis of specific protein analyzer based on concave grating[J]. Acta Optica Sinica, 2019, 39(8): 380-388(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908046.htm
    [11] 扶昭富, 李攻科, 胡玉斐. 催化化学发光分析系统研究进展[J]. 光谱学与光谱分析, 2015, 35(9): 2450-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201509014.htm

    FU Z F, LI G K, HU Y F. Research progress of catalytic chemiluminescence analysis system[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2450-2456(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201509014.htm
    [12] 金星焕, 陈和, 董家宁, 等. 凹面光栅拉曼光谱仪的光学设计[J]. 光学学报, 2015, 35(9): 359-365.

    JIN X H, CHEN H, DONG J N, et al. Optical design of concave grating Raman spectrometer[J]. Acta Optica Sinica, 2015, 35(9): 359-365(in Chinese).
    [13] 国爱燕, 白廷柱, 胡海鹤, 等. 固体火箭发动机羽烟紫外辐射特性分析[J]. 光学学报, 2012, 32(10): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201210027.htm

    GUO A Y, BAI T Z, HU H H, et al. Analysis of ultraviolet radiation characteristics of solid rocket motor plume[J]. Acta Optica Sinica, 2012, 32(10): 176-183(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201210027.htm
    [14] 杨兰, 蔡晓梅, 周雄图, 等. 圆孔液晶透镜的ZEMAX设计与优化[J]. 发光学报, 2017, 38(12): 1688-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201712020.htm

    YANG L, CAI X M, ZHOU X T, et al. ZEMAX design and optimization of round hole liquid crystal lens[J]. Chinese Journal of Luminescence, 2017, 38(12): 1688-1694(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201712020.htm
    [15] 李杭, 刘文清, 姚路. 基于PIN光电二极管的微型一氧化氮化学发光传感器[J]. 光学学报, 2019, 39(5): 291-295. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201905036.htm

    LI H, LIU W Q, YAO L. Miniature nitric oxide chemiluminescence sensor based on PIN photodiode[J]. Acta Optica Sinica, 2019, 39(5): 291-295(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201905036.htm
    [16] 陈洪芳, 汤亮, 石照耀, 等. 基于双波长法补偿空气折射率的激光追踪系统ZEMAX仿真方法[J]. 中国激光, 2019, 46(1): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201901029.htm

    CHEN H F, TANG L, SHI Z Y, et al. ZEMAX simulation method of laser tracking system based on dual-wavelength method to compensate air refractive index of air[J]. Chinese Journal of Lasers, 2019, 46(1): 232-239(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201901029.htm
    [17] 陈洪芳, 汤亮, 孙衍强, 等. 基于Zemax仿真的激光追踪测量光学系统能量分析[J]. 中国激光, 2018, 45(7): 183-190. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201807025.htm

    CHEN H F, TANG L, SUN Y Q, et al. Energy analysis of laser tracking measurement optical system based on Zemax simulation[J]. Chinese Journal of Lasers, 2018, 45(7): 183-190(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201807025.htm
    [18] HAN X Y, HUAN K W, SHENG S J. Performance evaluation and optimization design of photoelectric pyrometer detection optical system[J]. Defence Technology, 2020, 16(2): 401-407.
    [19] GAN L, ZHANG H, LIU B, et al. Influence of high overload on the collimating lenses of laser ranging systems[J]. Defence Technology, 2020, 16(2): 354-361.
    [20] WU Q Y, TANG Y H, CHEN X Y, et al. Method for evaluating ophthalmic lens based on eye-lens-object optical system[J]. Optics Express, 2019, 27(26): 37274-37285.
    [21] HUANG P, HE C W, FAN B, et al. Analysis and optimization of the Glass pattern realized by a microlens array[J]. Applied Optics, 2019, 58(36): 9976-9982.
    [22] HANG T Y, WANG X L, LIU F, et al. Zemax-based optimum structural design of probe of an optical-fiber sensor[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35(2): 309-317.
    [23] LIU P, CHEN B, ZHANG Y C, et al. Simulation method of Wolter type grazing incidence telescope imaging of an X-ray region[J]. Research in Astronomy and Astrophysics, 2019, 19(12): 13-20.
    [24] LEE J, LEE J, WON Y H. Nonmechanical three-dimensional beam steering using electrowetting-based liquid lens and liquid prism[J]. Optics Express, 2019, 27(25): 36757-36766.
    [25] ZHANG J K, WANG X, CHEN X B, et al. Paraxial lens design of double-telecentric anamorphic zoom lenses with variable magnifications or fixed conjugate[J]. Journal of the Optical Society of America A-Optics, Image Science, and Vision, 2019, 36(12): 1977-1990.
    [26] BISESTO F G, CASTELLANO M, CHIADRONI E, et al. Zemax simulations describing collective effects in transition and diffraction radiation[J]. Optics Express, 2018, 26(4): 5075-5082.
    [27] WEI L M, WANG C C, DUAN W R. Simulation of detecting piston error between segmented mirrors by Fizaeu interference technique on ZEMAX[J]. Optik, 2019, 183: 828-834.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  71
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 录用日期:  2021-06-06
  • 网络出版日期:  2021-07-30
  • 整期出版日期:  2022-11-20

目录

    /

    返回文章
    返回
    常见问答