留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进YOLOv5s的弱光水下生物目标检测算法

陈宇梁 董绍江 孙世政 闫凯波

陈宇梁,董绍江,孙世政,等. 改进YOLOv5s的弱光水下生物目标检测算法[J]. 北京航空航天大学学报,2024,50(2):499-507 doi: 10.13700/j.bh.1001-5965.2022.0322
引用本文: 陈宇梁,董绍江,孙世政,等. 改进YOLOv5s的弱光水下生物目标检测算法[J]. 北京航空航天大学学报,2024,50(2):499-507 doi: 10.13700/j.bh.1001-5965.2022.0322
CHEN Y L,DONG S J,SUN S Z,et al. Improved YOLOv5s low-light underwater biological target detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):499-507 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0322
Citation: CHEN Y L,DONG S J,SUN S Z,et al. Improved YOLOv5s low-light underwater biological target detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):499-507 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0322

改进YOLOv5s的弱光水下生物目标检测算法

doi: 10.13700/j.bh.1001-5965.2022.0322
基金项目: 国家自然科学基金 (51775072);重庆市科技创新领军人才支持计划 (CSTCCCXLJRC201920);重庆市高校创新研究群体(CXQT20019);重庆市北碚区科学技术局技术创新与应用示范项目(2020-6);城市轨道交通车辆系统集成与控制实验室开放基金(CKLURTSIC-KFKT-202007)
详细信息
    通讯作者:

    E-mail:dongshaojiang100@163.com

  • 中图分类号: TP391

Improved YOLOv5s low-light underwater biological target detection algorithm

Funds: National Natural Science Foundation of China (51775072); Chongqing Science and Technology Innovation Leading Talents Support Program (CSTCCCXLJRC201920); Chongqing University Innovation Research Group (CXQT20019);Technology Innovation and Application Demonstration Project of Chongqing Beibei Science and Technology Bureau (2020-6); Chongqing Key Laboratory of Urban Rail Transit System Integration and Control Open Fund (CKLURTSIC-KFKT-202007)
More Information
  • 摘要:

    针对水下光学图像目标检测过程中由于水中光线衰弱严重、图像环境复杂和拍摄设备移动等造成的生物识别精度低的问题,提出了基于改进YOLOv5s的弱光水下生物目标实时检测算法YOLOv5s-underwater。针对弱光水下光线衰弱的问题,引入了限制对比度自适应直方图均衡(CLAHE)算法对输入图像进行预处理,解决了颜色失真和图像毛糙的问题。针对复杂的弱光水下图像环境,提出了快速空间金字塔池化(SPPF)模块,解决了水下物体区分度低和特征损失严重的问题。针对拍摄设备移动带来的场景和形态变化问题,提出了一种基于旋转窗口的Swin-Transformer模块,提高了模型的泛化能力。针对水下小目标,修改了网络模型结构,提高了小目标的检测能力。仿真和实验结果表明:所提算法相较于YOLOv5s检测精度提高30.7%,证明了算法的有效性。

     

  • 图 1  YOLOv5s-underwater网络结构

    Figure 1.  Network structure for YOLOv5s-underwater

    图 2  弱光水下图像经算法处理前后效果对比

    Figure 2.  Comparison of effect of shallow sea underwater image before and after algorithm processing

    图 3  SPPF模块结构

    Figure 3.  Structure of SPPF module

    图 4  Swin-Transformer模块

    Figure 4.  Swin-Transformer module

    图 5  窗口划分

    Figure 5.  Windows partition

    图 6  颈部层部分网络结构

    Figure 6.  Neck layer partial network structure

    图 7  数据集图像

    Figure 7.  Datasets images

    图 8  二元分类的混淆矩阵

    Figure 8.  Confusion matrix for binary classification

    图 9  部分包含水草的图像

    Figure 9.  Section contains partially images of waterweeds

    图 10  YOLOv5s(左)和YOLOv5s-underwater(右)的检测结果

    Figure 10.  Test results of YOLOv5s (left) and YOLOv5S-Underwater (right)

    表  1  改进的YOLOv5s和YOLOv5s实验结果1

    Table  1.   Improved YOLOv5s and YOLOv5s experimental results 1 %

    算法 精确度 平均精确度 召回率 F1
    海参 海胆 扇贝 海星 水草
    YOLOv5s 61.5 67.7 65.3 69.9 20.0 56.9 68.1 62.00
    YOLOv5s+CLAHE 73.0 73.4 72.4 74.2 89.7 76.5 68.4 72.22
    YOLOv5s+SPPF 63.8 68.1 62.9 71.4 88.7 71.0 66.9 68.89
    YOLOv5s+CLAHE+SPPF 74.3 76.9 72.1 76.6 94.2 78.8 67.1 72.48
    YOLOv5s+SPPF+ST 69.3 74.6 71.4 76.6 97.2 77.8 66.0 71.42
    YOLOv5s+CLAHE+SPPF+ST 81.9 84.2 79.7 80.5 99.1 85.1 68.1 75.66
    YOLOv5s-underwater 84.8 85.6 83.0 84.8 99.8 87.6 67.4 76.18
    下载: 导出CSV

    表  2  改进的YOLOv5s和YOLOv5s实验结果2

    Table  2.   Improved YOLOv5s and YOLOv5s experimental results 2

    算法 $ P_m@0.5 $/% $ P_m@0.5:0.95 $/% 检测速度/
    (帧·s−1)
    YOLOv5s 60.6 32.3 166.67
    YOLOv5s+CLAHE 70.2 36.0 138.89
    YOLOv5s+SPPF 68.1 35.3 247.73
    YOLOv5s+CLAHE+SPPF 71.7 38.4 239.71
    YOLOv5s+SPPF+ST 68.9 37.9 154.86
    YOLOv5s+CLAHE+SPPF+ST 74.1 39.8 150.10
    YOLOv5s-underwater 74.1 41.6 146.84
    下载: 导出CSV

    表  3  改进的YOLOv5s和其他目标检测算法实验结果1对比

    Table  3.   Comparison of experimental results 1 of improved YOLOv5s and other target detection algorithms

    网络模型 平均精确度/% 召回率/% $ {F_1} $/% 检测速度/(帧·s−1)
    Faster R-CNN 40.1 16.4 23.28 20.44
    SSD 37.7 14.9 21.36 30.17
    Mbv2-SSD 31.4 12.5 17.88 70.16
    下载: 导出CSV

    表  4  改进的YOLOv5s和其他目标检测算法实验结果对比

    Table  4.   Comparison of experimental results of improved YOLOv5s and other target detection algorithms

    网络模型 平均精确度/% 召回率/% $ {F_1} $/% 检测速度/(帧·s−1)
    CenterNet 41.9 93.38
    YOLOv5m 67.1 56.7 61.46 83.33
    YOLOv5l 77.7 64.0 70.19 52.63
    YOLOv5x 83.1 70.9 76.52 32.26
    YOLOv5s-underwater 87.6 67.4 76.18 140.84
    下载: 导出CSV
  • [1] 李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的水下光学图像感兴趣目标检测算法研究[J]. 电子与信息学报, 2022, 44(10): 3372-3378. doi: 10.11999/JEIT210761

    LI B Q, HUANG H N, LIU J Y, et al. Underwater optical image interested object detection model based on improved SSD[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3372-3378 (in Chinese). doi: 10.11999/JEIT210761
    [2] 金盛龙, 迟骋, 李宇, 等. 稀疏驱动自适应线谱增强的水下目标谱熵检测[J]. 声学学报, 2021, 46(6): 1059-1069. doi: 10.15949/j.cnki.0371-0025.2021.06.025

    JIN S L, CHI C, LI Y, et al. A supervised learning detection method with pre-processing of sparsity-based adaptive line enhancer[J]. Acta Acustica, 2021, 46(6): 1059-1069(in Chinese). doi: 10.15949/j.cnki.0371-0025.2021.06.025
    [3] 徐凤强, 董鹏, 王辉兵, 等. 基于水下机器人的海产品智能检测与自主抓取系统[J]. 北京航空航天大学学报, 2019, 45(12): 2393-2402.

    XU F Q, DONG P, WANG H B, et al. Intelligent detection and autonomous capture system of seafood based on underwater robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2393-2402(in Chinese).
    [4] ZHOU J C, ZHANG D H, ZHANG W S. Classical and state-of-the-art approaches for underwater image defogging: A comprehensive survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1745-1769.
    [5] 董绍江, 刘伟, 蔡巍巍, 等. 基于分层精简双线性注意力网络的鱼类识别[J]. 计算机工程与应用, 2022, 58(5): 186-192.

    DONG S J, LIU W, CAI W W, et al. Fish recognition based on hierarchical compact bilinear attention network[J]. Computer Engineering and Applications, 2022, 58(5): 186-192(in Chinese).
    [6] 牛浩青, 欧鸥, 饶姗姗, 等. 改进YOLOv3的遥感影像小目标检测方法[J]. 计算机工程与应用, 2022, 58(13): 241-248.

    NIU H Q, OU O, RAO S S, et al. Small object detection method based on improved YOLOv3 in remote sensing image[J]. Computer Engineering and Applications, 2022, 58(13): 241-248(in Chinese).
    [7] WANG X H, ZHU Y G, LI D Y, et al. Underwater target detection based on reinforcement learning and ant colony optimization[J]. Journal of Ocean University of China, 2022, 21(2): 323-330. doi: 10.1007/s11802-022-4887-4
    [8] OKSUZ K, CAM B C, KALKAN S, et al. Imbalance problems in object detection: A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3388-3415. doi: 10.1109/TPAMI.2020.2981890
    [9] 周清松, 董绍江, 罗家元, 等. 改进YOLOv3的桥梁表观病害检测识别[J]. 重庆大学学报, 2022, 45(6): 121-130.

    ZHOU Q S, DONG S J, LUO J Y, et al. Bridge apparent disease detection based on improved YOLOv3[J]. Journal of Chongqing University, 2022, 45(6): 121-130(in Chinese).
    [10] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-06) [2022-05-01]. https://arxiv.org/abs/1804.02767.
    [11] AHMAD T, CHEN X N, SAQLAIN A S, et al. EDF-SSD: An improved feature fused SSD for object detection[C]//Proceedings of the IEEE 6th International Conference on Cloud Computing and Big Data Analytics. Piscataway: IEEE Press, 2021: 469-473.
    [12] ZHANG Z D, TAN M L, LAN Z C, et al. CDNet: A real-time and robust crosswalk detection network on Jetson nano based on YOLOv5[J]. Neural Computing and Applications, 2022, 34(13): 10719-10730.
    [13] WALIA I S, KUMAR D, SHARMA K, et al. An integrated approach for monitoring social distancing and face mask detection using stacked ResNet-50 and YOLOv5[J]. Electronics, 2021, 10(23): 2996. doi: 10.3390/electronics10232996
    [14] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2022: 9992-10002.
    [15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  23
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 录用日期:  2022-07-01
  • 网络出版日期:  2022-07-14
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答