留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

视觉SLAM方法综述

王朋 郝伟龙 倪翠 张广渊 巩慧

王朋,郝伟龙,倪翠,等. 视觉SLAM方法综述[J]. 北京航空航天大学学报,2024,50(2):359-367 doi: 10.13700/j.bh.1001-5965.2022.0376
引用本文: 王朋,郝伟龙,倪翠,等. 视觉SLAM方法综述[J]. 北京航空航天大学学报,2024,50(2):359-367 doi: 10.13700/j.bh.1001-5965.2022.0376
WANG P,HAO W L,NI C,et al. An overview of visual SLAM methods[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):359-367 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0376
Citation: WANG P,HAO W L,NI C,et al. An overview of visual SLAM methods[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):359-367 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0376

视觉SLAM方法综述

doi: 10.13700/j.bh.1001-5965.2022.0376
基金项目: 中国博士后科学基金(2021M702030); 山东省交通运输厅科技计划(2021B120)
详细信息
    通讯作者:

    E-mail:emilync@126.com

  • 中图分类号: TP391.4

An overview of visual SLAM methods

Funds: China Postdoctoral Science Foundation (2021M702030); Science and Technology Programe of Transportation Department of Shandong Province (2021B120)
More Information
  • 摘要:

    实时定位与建图(SLAM)技术搭载特定传感器,使移动机器人在无任何环境先验条件下,在运动过程中自主建立环境模型来计算自身位姿,大幅提高其自主导航能力,以及对不同应用环境的适应性。视觉SLAM方法以相机作为外部传感器,通过采集周围环境信息来创建地图并实时估计机器人自身位姿。为此,介绍了具有代表性的经典视觉SLAM方法及与深度学习相结合的视觉SLAM方法,分析了视觉SLAM方法中采用的不同特征检测方法、后端优化、闭环检测,以及动态环境下视觉SLAM方法的应用,总结了视觉SLAM方法的问题,并探讨了视觉SLAM方法在未来的热点研究方向和发展前景。

     

  • 图 1  视觉SLAM方法流程

    Figure 1.  Flow of visual SLAM methods

    图 2  PTAM框架

    Figure 2.  PTAM framework

  • [1] 权美香, 朴松昊, 李国. 视觉SLAM综述[J]. 智能系统学报, 2016, 11(6): 768-776.

    QUAN M X, PIAO S H, LI G. An overview of visual SLAM[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 768-776(in Chinese).
    [2] DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1052-1067. doi: 10.1109/TPAMI.2007.1049
    [3] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Piscataway: IEEE Press, 2007: 225-234.
    [4] ROSTEN E. Machine learning for very high-speed corner detection[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2006.
    [5] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: Dense tracking and mapping in real-time[C]//Proceedings of the International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 2320-2327.
    [6] ENGEL J, SCHÖPS T, CREMERS D. LSD-SLAM: Large-scale direct monocular SLAM[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2014: 834-849.
    [7] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: Fast semi-direct monocular visual odometry[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2014: 15-22.
    [8] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671
    [9] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. doi: 10.1109/TRO.2017.2705103
    [10] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. doi: 10.1109/TRO.2021.3075644
    [11] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF[C]//Proceedings of the International Conference on Computer Vision. Piscataway: IEEE Press, 2011: 2564-2571.
    [12] ŞIMŞEK B, SATIR S, BILGE H Ş. Performance comparison of direct and feature based vSLAM algorithms[C]//Proceedings of the 29th Signal Processing and Communications Applications Conference. Piscataway: IEEE Press, 2021: 1-4.
    [13] ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611-625.
    [14] LI R, WANG S, LONG Z, et al. UnDeepVO: Monocular visual odometry through unsupervised deep learning[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2018: 7286-7291.
    [15] BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: Tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4076-4083. doi: 10.1109/LRA.2018.2860039
    [16] KANG S, GAO Y, LI K, et al. A visual SLAM algorithm based on dynamic feature point filtering[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE Press, 2021: 1968-1973.
    [17] WANG J, RÜNZ M, AGAPITO L. DSP-SLAM: Object oriented SLAM with deep shape priors[C]//Proceedings of the International Conference on 3D Vision. Piscataway: IEEE Presss, 2021: 1362-1371.
    [18] SHI J. Good features to track[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 1994: 593-600.
    [19] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the International Conference on Computer Vision. Piscataway: IEEE Press, 1999, 2: 1150-1157.
    [20] BAY H, TUYTELAARS T, GOOL L V. SURF: Speeded up robust features[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2006: 404-417.
    [21] SUN C Z, ZHANG B, WANG J K, et al. A review of visual SLAM based on unmanned systems[C]//Proceedings of the 2nd International Conference on Artificial Intelligence and Education. Piscataway: IEEE Press, 2021: 226-234.
    [22] JIAN M, WANG J, YU H, et al. Visual saliency detection by integrating spatial position prior of object with background cues[J]. Expert Systems with Applications, 2021, 168: 114219. doi: 10.1016/j.eswa.2020.114219
    [23] 汤一明, 刘玉菲, 黄鸿. 视觉单目标跟踪算法综述[J]. 测控技术, 2020, 39(8): 21-34. doi: 10.19708/j.ckjs.2020.08.003

    TANG Y M, LIU Y F, HUANG H. Overview of visual single target tracking algorithm[J]. Measurement and Control Technology, 2020, 39(8): 21-34(in Chinese). doi: 10.19708/j.ckjs.2020.08.003
    [24] KONDA K R, MEMISEVIC R. Learning visual odometry with a convolutional network[C]//Proceedings of the International Conference on Computer Vision Theory and Application. Setubal: Science and Technology Publications, 2015: 486-490.
    [25] HOU Y, ZHANG H, ZHOU S. Convolutional neural network-based image representation for visual loop closure detection[C]//Proceedings of the IEEE International Conference on Information and Automation. Piscataway: IEEE Press, 2015: 2238-2245.
    [26] ZHANG X, SU Y, ZHU X. Loop closure detection for visual SLAM systems using convolutional neural network[C]//Proceedings of the 23rd International Conference on Automation and Computing. Piscataway: IEEE Press, 2017: 1-6.
    [27] QIN T, CAO S, PAN J, et al. A general optimization-based framework for global pose estimation with multiple sensors[EB/OL]. (2019-01-11)[2022-05-01].https://arxiv.org/abs/1901.03642.
    [28] GAUTAM A, MAHANGADE S, GUPTA V I, et al. An experimental comparison of visual SLAM systems[C]//Proceedings of the International Symposium of Asian Control Association on Intelligent Robotics and Industrial Automation. Piscataway: IEEE Press, 2021: 13-18.
  • 加载中
图(2)
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  129
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-18
  • 录用日期:  2022-06-23
  • 网络出版日期:  2022-10-10
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答