留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

区域感知实时人像超分辨率重建网络

龚柯存 周梦琳 唐东明

龚柯存,周梦琳,唐东明. 区域感知实时人像超分辨率重建网络[J]. 北京航空航天大学学报,2024,50(2):588-595 doi: 10.13700/j.bh.1001-5965.2022.0394
引用本文: 龚柯存,周梦琳,唐东明. 区域感知实时人像超分辨率重建网络[J]. 北京航空航天大学学报,2024,50(2):588-595 doi: 10.13700/j.bh.1001-5965.2022.0394
GONG K C,ZHOU M L,TANG D M. Region-aware real-time portrait super resolution reconstruction network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):588-595 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0394
Citation: GONG K C,ZHOU M L,TANG D M. Region-aware real-time portrait super resolution reconstruction network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):588-595 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0394

区域感知实时人像超分辨率重建网络

doi: 10.13700/j.bh.1001-5965.2022.0394
基金项目: 国家自然科学基金(61873217);四川省科技计划(2021JDRC0063);西南民族大学中央高校基本科研业务费专项资金(校2021118)
详细信息
    通讯作者:

    E-mail:tdm_2010@swun.edu.cn

  • 中图分类号: TP391.4

Region-aware real-time portrait super resolution reconstruction network

Funds: National Natural Science Foundation of China (61873217); Sichuan Science and Technology Program (2021JDRC0063); The Fundamental Research Funds for the Central Universities, Southwest Minzu University (2021118)
More Information
  • 摘要:

    在人像超分辨率重建领域,传统方法通常将整幅图像进行统一处理,导致效率低下。为降低模型的推理时延,提出了一种实时超分辨率重建模型RASR。该模型利用门控单元处理低分辨率图像,识别出人像边缘区域;采用分区重建策略,使用不同尺寸的子模型分别针对包含或不包含人像边缘的区域进行重建。实验结果表明:与现有方法相比,RASR模型在4倍上采样重建场景下的推理时延降低了88%,能够更有效地重建高分辨率人像图像。

     

  • 图 1  轻量语义分割模型网络结构

    Figure 1.  Network architecture of lightweight semantic segmentation model

    图 2  可信特征提取器结构

    Figure 2.  Trusted feature extractor structure

    图 3  低分辨率图像与可信特征提取器输出特征图对比

    Figure 3.  Comparison of low-resolution image and TFE output features

    图 4  超分辨率重建模块整体框架示意图

    Figure 4.  Schematic diagram of overall framework of super-resolution reconstruction module

    图 5  大尺寸模型框架

    Figure 5.  Large scale model framework

    图 6  小尺寸模型框架

    Figure 6.  Small scale model framework

    图 7  通道划分特征提取器结构

    Figure 7.  Structure of channel-wise split feature extractor

    图 8  不同模型性能对比

    Figure 8.  Performance comparison of different models

    图 9  不同模型重建效果对比

    Figure 9.  Reconstruction comparison of different models

    表  1  CSFE模块性能对比

    Table  1.   Performance comparison of CSFE module

    MAC/109 时延/ms mPSNR/dB mSSIM
    0.25 28.29 20.87 32.94 0.9388
    0.50 29.01 22.78 32.97 0.9401
    0.75 29.12 24.92 33.01 0.9404
    1.00 29.21 27.74 33.03 0.9405
     注:MAC为前向传播每秒执行的乘累加计算量,mPSNR为平均峰值信噪比,mSSIM为平均结构相似度。
    下载: 导出CSV

    表  2  可信特征提取器应用前后语义分割模型性能对比

    Table  2.   Performance comparison of semantic segmentation models before and after application of TFE

    有无TFE 参数量/103 MAC/106 时延/ms mPA/% mIoU
    150.08 97.01 1.01 91.7 93.26
    150.18 97.15 1.02 92.2 94.81
     注:mPA为平均像素准确率,mIoU为平均交并比。
    下载: 导出CSV

    表  3  2倍和4倍重建倍率下各模型的性能对比

    Table  3.   Performance comparison of various models under2 and 4 reconstruction magnification

    方法 PSNR/dB SSIM 时延/ms
    s=2 s=4 s=2 s=4 s=2 s=4
    Bicubic 30.56 26.74 0.91 0.81 0.2 0.2
    SRCNN[5] 33.21 28.86 0.95 0.91 15 19
    FSRCNN[21] 34.12 29.93 0.96 0.92 72 92
    EDSR[6] 35.31 32.96 0.97 0.94 151 177
    SplitSR[22] 35.05 31.46 0.96 0.93 48 56
    ESPCN[23] 34.54 31.11 0.95 0.92 88 94
    本文 35.13 32.94 0.97 0.94 18 21
    下载: 导出CSV
  • [1] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. doi: 10.1109/TASSP.1981.1163711
    [2] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645.
    [3] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1646-1654.
    [4] LIU F, YU Q, CHEN L, et al. Aerial image super-resolution based on deep recursive dense network for disaster area surveillance[J]. Personal Ubiquitous Computing, 2022, 26: 1205-1214.
    [5] DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2014: 184-199.
    [6] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 136-144.
    [7] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [8] TONG T, LI G, LIU X, et al. Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 4799-4807.
    [9] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    [10] HAN K, WANG Y, TIAN Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1580-1589.
    [11] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [12] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803.
    [13] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [14] YU C, WANG J, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 334-349.
    [15] FAN M, LAI S, HUANG J, et al. Rethinking bisenet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 9716-9725.
    [16] HE Z, LIU K, LIU Z, et al. A lightweight multi-scale feature integration network for real-time single image super-resolution[J]. Journal of Real-Time Image Processing, 2021, 18(4): 1221-1234. doi: 10.1007/s11554-021-01142-7
    [17] ACUNA D, LING H, KAR A, et al. Efficient interactive annotation of segmentation datasets with Polygon-RNN++[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 859-868.
    [18] LING H, GAO J, KAR A, et al. Fast interactive object annotation with Curve-GCN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 5257-5266.
    [19] BELKIN M, HSU D, MA S, et al. Reconciling modern machine-learning practice and the classical bias-variance trade-off[J]. Proceedings of the National Academy of Sciences, 2019, 116(32): 15849-15854. doi: 10.1073/pnas.1903070116
    [20] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [21] DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European Conference on Computer Vision. Berlin:Springer, 2016: 391-407.
    [22] LIU X, LI Y, FROMM J, et al. SplitSR: An end-to-end approach to super-resolution on mobile devices[C]//Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies.New York:ACM, 2021, 5(1): 1-20.
    [23] SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 1874-1883.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  89
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-09-20
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答