留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期规律增强的多视角短期电力负荷预测

苏伟 肖小龙 史明明 方鑫 司鑫尧

苏伟,肖小龙,史明明,等. 周期规律增强的多视角短期电力负荷预测[J]. 北京航空航天大学学报,2024,50(2):477-486 doi: 10.13700/j.bh.1001-5965.2022.0399
引用本文: 苏伟,肖小龙,史明明,等. 周期规律增强的多视角短期电力负荷预测[J]. 北京航空航天大学学报,2024,50(2):477-486 doi: 10.13700/j.bh.1001-5965.2022.0399
SU W,XIAO X L,SHI M M,et al. Periodic pattern-enhanced multi-view short-term load prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):477-486 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0399
Citation: SU W,XIAO X L,SHI M M,et al. Periodic pattern-enhanced multi-view short-term load prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):477-486 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0399

周期规律增强的多视角短期电力负荷预测

doi: 10.13700/j.bh.1001-5965.2022.0399
基金项目: 国网江苏省电力有限公司科技项目(J2021165)
详细信息
    通讯作者:

    E-mail: susw2011@163.com

  • 中图分类号: TP399

Periodic pattern-enhanced multi-view short-term load prediction

Funds: The Science and Technology Project of State Grid Jiangsu Electric Power Co., Ltd (J2021165)
More Information
  • 摘要:

    短期电力负荷预测对电力系统的可靠运行具有重要意义。现有方法存在如下问题:缺乏对特征之间依赖关系的挖掘;忽略了电力负荷变化的周期性规律。为此,提出一种周期规律增强的多视角短期电力负荷预测网络(EPISODE)方法。EPISODE方法主要包括2个核心组件:多视角特征学习组件和周期规律增强的电力负荷预测组件。前者旨在有效提取电力负荷数据中的静态特征与时序特征,以得到增强的特征表示;后者则是对电力负荷数据进行一般性时序挖掘和周期性时序挖掘,从而得到全面的电力负荷历史数据表征。基于后期融合的方式,实现短期电力负荷预测。在真实公开的电力负荷预测数据集上进行了大量实验。实验结果证明了所提方法相比现有基准方法的先进性。

     

  • 图 1  EPISODE整体网络结构图

    Figure 1.  Overall network structure diagram of EPISODE

    图 2  基于一维卷积神经网络的静态特征提取模块

    Figure 2.  1D-CNN based static feature extraction module

    图 3  压缩激励模块结构

    Figure 3.  Squeeze-and-excitation module structure

    图 4  基于GRU的时序特征提取模块结构

    Figure 4.  GRU based time series feature extraction module structure

    图 5  EPISODE在不同时间窗口下的预测结果

    Figure 5.  Prediction results of EPISODE in different windows

    图 6  EPISODE与基准方法的预测结果

    Figure 6.  The load prediction results of EPISODE and baselines

    图 7  EPISODE 与衍生模型的预测结果

    Figure 7.  The load prediction results of EPISODE and derivations

    图 8  特征提取单元层数的敏感性实验结果

    Figure 8.  Sensitivity experiment results with different feature extraction layers

    图 9  GRU-Skip模块中$ p $取值的敏感性实验结果

    Figure 9.  Sensitivity experiments with different value of $ p $ in GRU-Skip module

    表  1  EPISODE在不同时间窗口的预测精度对比

    Table  1.   Comparison of prediction accuracy of EPISODE in different window

    时间窗口 MAPE/% RMSE/MW
    $ M= $7 1.5234 165.7249
    $ M=14 $ 1.3993 112.4938
    $ M=21 $ 1.0115 81.2460
    $ M=28 $ 1.3053 115.5637
    $ M=30 $ 1.1400 100.8728
    下载: 导出CSV

    表  2  EPISODE与基准方法在数据集上的预测精度和测试时间对比

    Table  2.   The comparison of EPISODE and baselines methods on prediction accuracy and test time

    方法 MAPE/% RMSE/MW 时间/s
    EPISODE 1.0115 81.2460 0.2953
    Attention-LSTM 2.7877 233.0022 0.7178
    FOMNN 2.1967 194.7047 0.3050
    GRU-NN 6.2449 472.8429 0.7624
    Dropout-ILSTM 5.5497 392.0774 0.9222
    Attention-BiLSTM-LSTM 2.1984 194.7577 1.5094
    CNN-BiLSTM 4.1792 422.5311 2.7181
    下载: 导出CSV

    表  3  EPISODE与衍生模型的预测精度对比

    Table  3.   Comparison of prediction accuracy between EPISODE and derivations

    模型 MAPE/% RMSE/MW
    EPISODE 1.0115 81.2460
    EPISODE_ NoSE 1.4542 123.2089
    EPISODE_NoGRU_Skip 1.6223 168.6200
    EPISODE_NoAttention 1.6427 188.6485
    下载: 导出CSV
  • [1] 康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004, 28(17): 1-11.

    KANG C Q, XIA Q, ZHANG B M. Review of power system load forecasting and its development[J]. Automation of Electric Power Systems, 2004, 28(17): 1-11 (in Chinese).
    [2] KEMP F. Applied multiple regression/correlation analysis for the behavioral sciences[J]. Journal of the Royal Statistical Society: Series D (the Statistician), 2003, 52(4): 691-691.
    [3] DI CAPRIO U, GENESIO R, POZZI S, et al. Short term load forecasting in electric power systems: A comparison of ARMA models and extended Wiener filtering[J]. Journal of Forecasting, 1983, 2(1): 59-76. doi: 10.1002/for.3980020107
    [4] LEE Y S, TONG L I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming[J]. Knowledge-Based Systems, 2011, 24(1): 66-72. doi: 10.1016/j.knosys.2010.07.006
    [5] H ERNÁNDEZ L, BALADRÓN C, AGUIAR J, et al. Artificial neural network for short-term load forecasting in distribution systems[J]. Energies, 2014, 7(3): 1576-1598. doi: 10.3390/en7031576
    [6] LDIN W M, TU C S, YANG R F, et al. Particle swarm optimisation aided least-square support vector machine for load forecast with spikes[J]. IET Generation, Transmission & Distribution, 2016, 10(5): 1145-1153.
    [7] 吴倩红, 高军, 侯广松, 等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化2016, 40(15): 67-72.

    WU Q H, GAO J, HOU G S, et al. Short-term load forecasting support vector machine algorithm based on multi-source heterogeneous fusion of load factors[J]. Automation of Electric Power System, 2016, 40(15): 67-72 (in Chinese)
    [8] 李婉华, 陈宏, 郭昆, 等. 基于随机森林算法的用电负荷预测研究[J]. 计算机工程与应用, 2016, 52(23): 236-243.

    LI W H, CHEN H, GUO K, et al. Research on electrical load prediction based on random forest algorithm[J]. Computer Engineering and Applications, 2016, 52(23): 236-243(in Chinese).
    [9] 彭鹏, 彭佳红. 基于多元线性回归模型的电力负荷预测研究[J]. 中国安全生产科学技术, 2011, 7(9): 158-161.

    PENG P, PENG J H. Research on the prediction of power load based on multiple linear regression model[J]. Journal of Safety Science and Technology, 2011, 7(9): 158-161 (in Chinese).
    [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
    [11] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088), 533-536.
    [12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [13] CHUNG J, GULCEHRE C, CHO K, et al. Gated feedback recurrent neural networks[C]//International Conference on Machine Learning. Lile: PMLR, 2015: 2067-2075.
    [14] 彭文, 王金睿, 尹山青. 电力市场中基于Attention-LSTM的短期负荷预测模型[J]. 电网技术, 2019, 43(5): 1745-1751.

    PENG W, WANG J R, YIN S Q. Short-term load forecasting model based on attention-LSTM in electricity market[J]. Power System Technology, 2019, 43(5): 1745-1751 (in Chinese).
    [15] 李龙, 魏靖, 黎灿兵, 等. 基于人工神经网络的负荷模型预测[J]. 电工技术学报, 2015, 30(8): 225-230.

    LI L, WEI J, LI C B, et al. Prediction of load model based on artificial neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 225-230 (in Chinese).
    [16] 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137.

    LU J X, ZHANG Q P, YANG Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137 (in Chinese).
    [17] 李泽文, 胡让, 刘湘, 等. 基于PCA-DBILSTM的多因素短期负荷预测模型[J]. 电力系统及其自动化学报, 2020, 32(12): 32-39.

    LI Z W, HU R, LIU X, et al. Multi-factor short-term load prediction model based on PCA-DBILSTM[J]. Proceedings of the CSU-EPSA, 2020, 32(12): 32-39 (in Chinese).
    [18] 杨洋, 谷震浩. 基于XGBOOST-DNN的中期电力负荷预测[J]. 计算机系统应用, 2021, 30(9): 186-191. doi: 10.15888/j.cnki.csa.008098

    YANG Y, GU Z H. Mid-term power load forecasting based on XGBoost-DNN[J]. Computer Systems & Applications, 2021, 30(9): 186-191 (in Chinese). doi: 10.15888/j.cnki.csa.008098
    [19] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. (2019-05-16) [2022-05-18]. https://arxiv.org/abs/1709.01507.pdf.
    [20] LAI G K, CHANG W C, YANG Y M, et al. Modeling long- and short-term temporal patterns with deep neural networks[EB/OL]. (2018-04-18) [2022-05-18] .https://arxiv.org/abs/1703.07015.pdf.
    [21] 庞昊, 高金峰, 杜耀恒. 基于多神经网络融合的短期负荷预测方法[J]. 电力自动化设备, 2020, 40(6): 37-43.

    PANG H, GAO J F, DU Y H. Short-term load forecasting method based on fusion of multiple neural networks[J]. Electric Power Automation Equipment, 2020, 40(6): 37-43 (in Chinese).
    [22] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53-58.

    WANG Z P, ZHAO B, JI W J, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53-58 (in Chinese).
    [23] 刘皓琪, 高飞, 王耀力, 等. 基于Dropout-ILSTM网络的短期电力负荷预测[J]. 电测与仪表, 2021, 58(5): 105-111.

    LIU H Q, GAO F, WANG Y L, et al. Short-term power load forecasting based on Dropout-ILSTM network[J]. Electrical Measurement & Instrumentation, 2021, 58(5): 105-111 (in Chinese).
    [24] 龚飘怡, 罗云峰, 方哲梅, 等. 基于Attention-BiLSTM-LSTM神经网络的短期电力负荷预测方法[J]. 计算机应用, 2021, 41(S1): 81-86.

    GONG P Y, LUO Y F, FANG Z M, et al. Short-term power load forecasting method based on Attention-BiLSTM-LSTM neural network[J]. Journal of Computer Applications, 2021, 41(S1): 81-86 (in Chinese).
    [25] 朱凌建, 荀子涵, 王裕鑫, 等. 基于CNN-Bi LSTM的短期电力负荷预测[J]. 电网技术, 2021, 45(11): 4532-4539.

    ZHU L J, XUN Z H, WANG Y X, et al. Short-term power load forecasting based on CNN-BiLSTM[J]. Power System Technology, 2021, 45(11): 4532-4539 (in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  58
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-21
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-12-14
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答