留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EM自注意力残差的图像超分辨率重建网络

黄淑英 胡瀚洋 杨勇 万伟国 吴峥

黄淑英,胡瀚洋,杨勇,等. 基于EM自注意力残差的图像超分辨率重建网络[J]. 北京航空航天大学学报,2024,50(2):388-397 doi: 10.13700/j.bh.1001-5965.2022.0401
引用本文: 黄淑英,胡瀚洋,杨勇,等. 基于EM自注意力残差的图像超分辨率重建网络[J]. 北京航空航天大学学报,2024,50(2):388-397 doi: 10.13700/j.bh.1001-5965.2022.0401
HUANG S Y,HU H Y,YANG Y,et al. Image super-resolution reconstruction network based on expectation maximization self-attention residual[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):388-397 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0401
Citation: HUANG S Y,HU H Y,YANG Y,et al. Image super-resolution reconstruction network based on expectation maximization self-attention residual[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):388-397 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0401

基于EM自注意力残差的图像超分辨率重建网络

doi: 10.13700/j.bh.1001-5965.2022.0401
基金项目: 国家自然科学基金(61862030,62072218); 江西省自然科学基金(20192ACB20002,20192ACBL21008)
详细信息
    通讯作者:

    E-mail:greatyangy@126.com

  • 中图分类号: TP391.41

Image super-resolution reconstruction network based on expectation maximization self-attention residual

Funds: National Natural Science Foundation of China (61862030,62072218); Natural Science Foundation of Jiangxi, China (20192ACB20002,20192ACBL21008)
More Information
  • 摘要:

    基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注意力残差的图像超分辨率重建网络。该网络通过改进基础残差块,构建特征增强残差块,以更好地复用残差块中所提取的特征。为增加特征信息在空间上的相关性,引入EM自注意力机制,构建EM自注意力残差模块来增强模型中每个模块的特征提取能力,并通过级联EM自注意力残差模块来构建整个模型的特征提取结构。所获得的特征图通过上采样的图像重建模块获得重建的高分辨率图像。将所提方法与主流方法进行实验对比,结果表明:所提方法在5个流行的SR测试集上能够取得较好的主观视觉效果和更优的性能指标。

     

  • 图 1  基于 EM 自注意力残差网络的结构

    Figure 1.  Network structure based on EM self-attention residual

    图 2  残差块结构

    Figure 2.  Residual block structure

    图 3  EM 自注意力机制

    Figure 3.  EM self-attention mechanism

    图 4  图像重建模块结构

    Figure 4.  Image reconstructed module structure

    图 5  放大因子为 2 时BSD100_37073数据集中一幅图像重建结果的可视化比较

    Figure 5.  Visualization comparison of reconstruction results of an image in BSD100_37373 dataset under a magnification factor of 2

    图 6  放大因子为 4 时BSD100_86000数据集中一幅图像重建结果的可视化比较

    Figure 6.  Visualization comparison of reconstruction results of an image in BSD100_86000 dataset under a magnification factor of 4

    表  1  放大因子分别为2、3、4时,不同方法在各数据集上SR重建图像的PSNR和SSIM平均结果

    Table  1.   Average PSNR and SSIM results of SR reconstructed images obtained by different methods under different magnification factors of 2, 3, and 4 on each dataset

    方法放大因子平均PSNR/dB平均SSIM
    Set5Set14BSD100Urban100Manga109Set5Set14BSD100Urban100Manga109
    Bicubic233.6630.2429.5626.8831.050.92990.86880.84310.84030.935
    SRCNN[12]236.6632.4531.3629.5035.720.95420.90670.88790.89460.968
    VDSR[14]237.5333.0331.9030.7637.160.95870.91240.89600.91400.974
    DRCN[15]237.6333.0431.8530.7537.570.95880.91180.89420.91330.973
    MS-LapSRN[33]237.7833.2832.0531.1537.780.96000.91500.89800.91900.976
    SRMDNF[34]237.7933.3232.0531.3338.070.96010.91590.89850.92040.976
    LESRCNN[35]237.6533.3231.9531.4538.490.95860.91480.89640.92060.9777
    PAN[36]238.0033.5932.1832.0138.700.96050.91810.89970.92730.9773
    SMSR[37]238.0033.6432.1732.1938.760.96010.91790.89900.92840.9771
    本文方法238.0033.6932.1832.1838.570.96060.92020.89970.92930.9774
    方法放大因子平均PSNR/dB平均SSIM
    Set5Set14BSD100Urban100Manga109Set5Set14BSD100Urban100Manga109
    Bicubic330.3927.5527.2124.4626.950.86820.77420.73850.73490.856
    SRCNN[12]332.7529.3028.4126.2430.480.90900.82150.78630.79890.912
    VDSR[14]333.6629.7728.8227.1432.010.92130.83140.79760.82790.934
    DRCN[15]333.8229.7628.8027.1532.310.92260.83110.79630.82760.936
    MS-LapSRN[33]334.0629.9728.9327.4732.680.92400.83600.80200.83700.939
    SRMDNF[34]334.1230.0428.9727.5733.000.92540.83820.80250.83980.9403
    LESRCNN[35]333.9330.1228.9127.7033.150.92310.83800.80050.84150.9433
    PAN[36]334.4030.3629.1128.1133.610.92710.84230.80500.85110.9448
    SMSR[37]334.4030.3329.1028.2533.680.92700.84120.80500.85360.9445
    本文方法334.4530.4129.1228.3133.620.92780.84420.80600.85540.9450
    方法放大因子平均PSNR/dB平均SSIM
    Set5Set14BSD100Urban100Manga109Set5Set14BSD100Urban100Manga109
    Bicubic428.4226.0025.9623.1425.150.81040.70270.66750.65770.789
    SRCNN[12]430.4827.5026.9024.5227.660.86280.75130.71010.72210.858
    VDSR[14]431.3528.0127.2925.1828.820.88380.76740.72510.75240.886
    DRCN[15]431.5328.0227.2325.1428.970.88540.76700.72330.75100.886
    MS-LapSRN[33]431.7428.2627.4325.5129.540.88900.77400.73100.76800.897
    SRMDNF[34]431.9628.3527.4925.6830.090.89250.77870.73370.77310.902
    LESRCNN[35]431.8828.4427.4525.7730.490.89030.77720.73130.77320.9091
    PAN[36]432.1328.6127.5926.1130.510.89480.78220.73630.78540.9095
    SMSR[37]432.1228.5527.5526.1130.540.89320.78080.73510.78680.9085
    本文方法432.2528.6927.5926.2030.500.89530.78410.73700.78910.9092
    下载: 导出CSV

    表  2  放大因子为2时不同方法在Set5数据集上的平均运行时间

    Table  2.   Average running time of different methods on Set5 dataset under a magnification factor of 2

    方法 平均运行时间/s
    SRCNN[12] 0.002 4
    VDSR[14] 0.005 2
    DRCN[15] 0.103 6
    MS-LapSRN[33] 0.038 4
    SRMDNF[34] 0.187 3
    LESRCNN[35] 0.002 6
    PAN[36] 0.035 4
    本文方法 0.090 2
    下载: 导出CSV

    表  3  放大因子为4时不同方法在Set5数据集上的LPIPS结果

    Table  3.   LPIPS results of different methods on Set5dataset under a magnification factor of 4

    方法 LPIPS
    Bicubic 0.3407
    SRCNN[12] 0.2421
    VDSR[14] 0.2246
    DRCN[15] 0.2289
    LESRCNN[35] 0.2188
    PAN[36] 0.2165
    本文方法 0.2142
    下载: 导出CSV

    表  4  放大因子为4时不同模块在Set5数据集上的比较结果

    Table  4.   Comparsion results of different blocks on Set5 dataset under a magnification factor of 4

    模型 PSNR/dB SSIM 参数量/103 计算量/109 FLOP
    DARN_res 32.20 0.8951 1649 1952
    DARN_dr 32.08 0.8940 1436 1756
    DARN_ema 31.79 0.8930 467 863
    DARN_ca 32.11 0.8942 1445 1757
    DARN 32.25 0.8953 1568 1878
     注:FLOP为浮点运算次数,使用尺寸为1280×720的图像来测试。
    下载: 导出CSV
  • [1] TAKEDA H, MILANFAR P, PROTTER M, et al. Super-resolution without explicit subpixel motion estimation[J]. IEEE Transactions on Image Processing, 2009, 18(9): 1958-1975. doi: 10.1109/TIP.2009.2023703
    [2] ZOU W W W, YUEN P C. Very low resolution face recognition problem[J]. IEEE Transactions on Image Processing, 2012, 21(1): 327-340.
    [3] SHI W, CABALLERO J, LEDIG C, et al. Cardiac image super-resolution with global correspondence using multi-atlas PatchMatch[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2013, 8151: 9-16.
    [4] ARUN P V, BUDDHIRAJU K M, PORWAL A, et al. CNN based spectral super-resolution of remote sensing images[J]. Signal Processing, 2020, 169: 107394. doi: 10.1016/j.sigpro.2019.107394
    [5] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. doi: 10.1109/TASSP.1981.1163711
    [6] MARQUIAN A, OSHER S J. Image super-resolution by TV-regularization and Bregman iteration[J]. Journal of Scientific Computing, 2008, 37(3): 367-382. doi: 10.1007/s10915-008-9214-8
    [7] DONG W, ZHANG L, SHI G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857. doi: 10.1109/TIP.2011.2108306
    [8] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873. doi: 10.1109/TIP.2010.2050625
    [9] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the International Conference on Curves and Surfaces. Berlin: Springer, 2010: 711-730.
    [10] HU Y, WANG N, TAO D, et al. SERF: A simple, effective, robust, and fast image super-resolver from cascaded linear regression[J]. IEEE Transactions on Image Processing, 2016, 25(9): 4091-4102. doi: 10.1109/TIP.2016.2580942
    [11] HUANG Y, LI J, GAO X, et al. Single image super-resolution via multiple mixture prior models[J]. IEEE Transactions on Image Processing, 2018, 27(12): 5904-5917. doi: 10.1109/TIP.2018.2860685
    [12] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. doi: 10.1109/TPAMI.2015.2439281
    [13] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [14] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1646-1654.
    [15] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1637-1645.
    [16] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1132-1140.
    [17] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11211: 286-310.
    [18] DAI T, CAI J, ZHANG Y, et al. Second-order attention network for single image super-resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 11057-11066.
    [19] HUI Z, WANG X, GAO X. Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 723-731.
    [20] LI J, FANG F, MEI K, et al. Multi-scale residual network for image super-resolution[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11212: 527-542.
    [21] AHN N, KANG B, SOHN K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11214: 256-272.
    [22] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 105-114.
    [23] WANG X, YU K, WU S, et al. ESRGAN: Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11133: 63-79.
    [24] YADAV S, CHEN C, ROSS A. Relativistic discriminator: A one-class classifier for generalized iris presentation attack detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2020: 2624-2633.
    [25] LEI J, LIU C, JIANG D. Fault diagnosis of wind turbine based on long short-term memory networks[J]. Renewable Energy, 2019, 133: 422-432. doi: 10.1016/j.renene.2018.10.031
    [26] TAN Z, WANG M, XIE J, et al. Deep semantic role labeling with self-attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2018.
    [27] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803.
    [28] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11211: 3-19.
    [29] SANG H, ZHOU Q, ZHAO Y. PCANet: Pyramid convolutional attention network for semantic segmentation[J]. Image and Vision Computing, 2020, 103: 103997. doi: 10.1016/j.imavis.2020.103997
    [30] 赵杨璐, 段丹丹, 胡饶敏, 等. 基于EM算法的混合模型中子总体个数的研究[J]. 数理统计与管理, 2020, 39(1): 35-50. doi: 10.13860/j.cnki.sltj.20190808-002

    ZHAO Y L, DUAN D D, HU R M, et al. On the number of components in mixture model based on EM algorithm[J]. Journal of Applied Statistics and Management, 2020, 39(1): 35-50(in Chinese). doi: 10.13860/j.cnki.sltj.20190808-002
    [31] LI X, ZHONG Z, WU J, et al. Expectation-maximization attention networks for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 9166-9175.
    [32] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on sngle image super-resolution: Dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1122-1131.
    [33] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 5835-5843.
    [34] ZHANG K, ZOU W, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3262-3271.
    [35] TIAN C, ZHUGE R, WU Z, et al. Lightweight image super-resolution with enhanced CNN[J]. Knowledge-Based Systems, 2020, 205: 106235. doi: 10.1016/j.knosys.2020.106235
    [36] ZHAO H, KONG X, HE J, et al. Efficient image super-resolution using pixel attention[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020, 12537: 56-72.
    [37] WANG L G, DONG X Y, WANG Y Q, et al. Exploring sparsity in image super-resolution for efficient inference[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 4915-4924.
    [38] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Procedings of the British Machine Vision Conference. Berlin: Springer, 2012: 135.1-135.10.
    [39] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2001, 2: 416-423.
    [40] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 5197-5206.
    [41] MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using Manga109 dataset[J]. Multimedia Tools and Applications, 2017, 76(20): 21811-21838. doi: 10.1007/s11042-016-4020-z
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  86
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-21
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-10-18
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答