留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于跨模态近邻损失的可视-红外行人重识别

赵三元 阿琪 高宇

赵三元,阿琪,高宇. 基于跨模态近邻损失的可视-红外行人重识别[J]. 北京航空航天大学学报,2024,50(2):433-441 doi: 10.13700/j.bh.1001-5965.2022.0422
引用本文: 赵三元,阿琪,高宇. 基于跨模态近邻损失的可视-红外行人重识别[J]. 北京航空航天大学学报,2024,50(2):433-441 doi: 10.13700/j.bh.1001-5965.2022.0422
ZHAO S Y,A Q,GAO Y. Cross-modality nearest neighbor loss for visible-infrared person re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):433-441 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0422
Citation: ZHAO S Y,A Q,GAO Y. Cross-modality nearest neighbor loss for visible-infrared person re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):433-441 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0422

基于跨模态近邻损失的可视-红外行人重识别

doi: 10.13700/j.bh.1001-5965.2022.0422
基金项目: 国家自然科学基金(61902027)
详细信息
    通讯作者:

    E-mail:zhaosanyuan@bit.edu.cn

  • 中图分类号: TP391.4

Cross-modality nearest neighbor loss for visible-infrared person re-identification

Funds: National Natural Science Foundation of China (61902027)
More Information
  • 摘要:

    可视-红外跨模态行人重识别任务的目标是给定一个模态的特定人员图像,在其他不同模态摄像机所拍摄的图像集中进行检索,找出相同人员对应的图像。由于成像方式不同,不同模态的图像之间存在明显的模态差异。为此,从度量学习的角度出发,对损失函数进行改进以获取具有更加辨别性的信息。对图像特征内聚性进行理论分析,并在此基础上提出一种基于内聚性分析和跨模态近邻损失函数的重识别方法,以加强不同模态样本的内聚性。将跨模态困难样本的相似性度量问题转化为跨模态最近邻样本对和同模态样本对的相似性度量,使得网络对模态内聚性的优化更加高效和稳定。对所提方法在全局特征表示的基线网络和部分特征表示的基线网络上进行实验验证结果表明:所提方法对可视-红外行人重识别的预测结果相较于基线方法,平均准确度最高可提升8.44%,证明了方法在不同网络架构中的通用性;同时,以较小的模型复杂度和较低的计算量为代价,实现了可靠的跨模态行人重识别结果。

     

  • 图 1  不同方法的内聚性度量示意图

    Figure 1.  Illustration of cohesion metrics for different methods

    图 2  基线网络结构示意图

    Figure 2.  Schematic diagram of baseline network architecture

    图 3  红外-可视和可视-红外模式下检索Rank-10结果示意图

    Figure 3.  Retrieval Rank-10 results for infrared-visible and visible-infrared modes

    表  1  RegDB数据集中可视-红外模式下全局特征表示的消融实验结果

    Table  1.   Ablation experimental results ofglobal feature representation under visible-infrared mode on RegDB dataset %

    方法Rank-1Rank-10Rank-20mAPmINP
    基线方法82.7691.9194.5780.6473.44
    CenL 1#83.4092.4795.5381.3573.95
    CenL 2#83.2892.5895.1681.3274.17
    本文方法85.1193.5096.0684.1876.70
    下载: 导出CSV

    表  2  RegDB数据集中红外-可视模式下全局特征表示的消融实验结果

    Table  2.   Ablation experimental results of global feature representation under infrared-visible mode on RegDB dataset %

    方法Rank-1Rank-10Rank-20mAPmINP
    基线方法83.6793.0095.5980.6571.41
    CenL 1#82.5192.7595.6780.7872.62
    CenL 2#82.3092.0294.7380.6572.57
    本文方法85.0893.0095.8782.8075.40
    下载: 导出CSV

    表  3  RegDB数据集中可视-红外模式下部分特征表示的消融实验结果

    Table  3.   Ablation experimental results of part feature representation under visible-infrared mode on RegDB dataset %

    方法Rank-1Rank-10Rank-20mAPmINP
    基线方法91.0597.1698.5783.2868.84
    本文方法93.9497.8798.9691.7285.99
    下载: 导出CSV

    表  4  RegDB数据集中红外-可视模式下部分特征表示的消融实验结果

    Table  4.   Ablation experimental results of part feature representation under infrared-visible mode on RegDB dataset %

    方法Rank-1Rank-10Rank-20mAPmINP
    基线方法89.3096.4198.1681.4664.81
    本文方法94.4397.8098.5591.8585.76
    下载: 导出CSV

    表  5  SYSU-MM01数据集中部分特征表示的消融实验结果

    Table  5.   Ablation experimental results under part feature representation on SYSU-MM01 dataset %

    方法Rank-1Rank-10Rank-20mAPmINP
    基线方法58.1890.4995.3455.2539.54
    本文方法59.9792.9696.9657.7143.60
    下载: 导出CSV

    表  6  RegDB数据集中可视-红外和红外-可视模式下本文方法与先进方法的比较

    Table  6.   Comparison with proposed method and advanced mothods on RegDB datasets under visible-infrared and infrared-visual modes %

    方法 Rank-1 mAP mINP
    可视-红外 红外-可视 可视-红外 红外-可视 可视-红外 红外-可视
    MPMN[31] 86.56 84.62 82.91 79.49
    NFS[25] 80.54 77.95 72.10 69.79
    MPANet[26] 82.80 83.70 80.70 80.90
    本文方法(全局特征表示) 89.34 86.49 88.26 85.34 79.47 77.19
    本文方法(部分特征表示) 93.94 94.43 91.72 91.85 85.99 85.76
    下载: 导出CSV

    表  7  SYSU-MM01数据集单发-全局设置下较方法与先进方法的比较

    Table  7.   Comparison with proposed method and advanced methods on SYSU-MM01 datasets under one shot-global setting %

    方法 Rank-1 mAP mINP
    AGW[32] 47.50 47.64 35.30
    NFS[25] 56.91 55.45
    MPANet[26] 70.58 68.24
    本文方法(全局特征表示) 53.30 52.50 39.32
    本文方法(部分特征表示) 59.97 57.71 43.60
    下载: 导出CSV
  • [1] GONG S G, XIANG T. Person re-identification[M]. GONG S G, XIANG T. Visual analysis of behaviour. Berlin: Springer, 2011: 301-313.
    [2] ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: Past, present and future[EB/OL]. (2016-10-10)[2020-03-15]. https://arxiv.org/abs/1610.02984.pdf.
    [3] GHEISSARI N, SEBASTIAN T B, HARTLEY R. Person reidentification using spatiotemporal appearance[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2006: 1528-1535.
    [4] KARANAM S, LI Y, RADKE R J. Person re-identification with discriminatively trained viewpoint invariant dictionaries[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2016: 4516-4524.
    [5] BAK S, ZAIDENBERG S, BOULAY B, et al. Improving person re-identification by viewpoint cues[C]//Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE Press, 2014: 175-180.
    [6] HUANG Y K, ZHA Z J, FU X Y, et al. Illumination-invariant person re-identification[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 365-373.
    [7] CHO Y J, YOON K J. Improving person re-identification via pose-aware multi-shot matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1354-1362.
    [8] ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle Net: Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 907-915.
    [9] WANG Z X, WANG Z, ZHENG Y Q, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 618-626.
    [10] HAO Y, WANG N N, LI J E, et al. HSME: Hypersphere manifold embedding for visible thermal person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019, 33(1): 8385-8392. doi: 10.1609/aaai.v33i01.33018385
    [11] YE M, LAN X Y, LENG Q M. Modality-aware collaborative learning for visible thermal person re-identification[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 347-355.
    [12] HAO Y, WANG N N, GAO X B, et al. Dual-alignment feature embedding for cross-modality person re-identification[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 57-65.
    [13] WANG G A, ZHANG T Z, CHENG J, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 3622-3631.
    [14] JIA M X, ZHAI Y P, LU S J, et al. A similarity inference metric for RGB-infrared cross-modality person re-identification[EB/OL]. (2020-07-03)[2022-03-18].https://arxiv.org/abs/2007.01504.pdf.
    [15] WEI X, LI D G, HONG X P, et al. Co-attentive lifting for infrared-visible person re-identification[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1028-1037.
    [16] WANG G A, ZHANG T Z, YANG Y, et al. Cross-modality paired-images generation for RGB-infrared person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020, 34(7): 12144-12151. doi: 10.1609/aaai.v34i07.6894
    [17] LU Y, WU Y, LIU B, et al. Cross-modality person re-identification with shared-specific feature transfer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 13376-13386.
    [18] YE M, SHEN J B, CRANDALL D, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2020: 229-247.
    [19] PU N, CHEN W, LIU Y, et al. Dual Gaussian-based variational subspace disentanglement for visible-infrared person re-identification[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2149-2158.
    [20] LI D G, WEI X, HONG X P, et al. Infrared-visible cross-modal person re-identification with an X modality[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020, 34(4): 4610-4617. doi: 10.1609/aaai.v34i04.5891
    [21] PARK H, LEE S, LEE J, et al. Learning by aligning: Visible-infrared person re-identification using cross-modal correspondences[EB/OL]. (2021-08-17)[2022-03-20]. https://arxiv.org/abs/2108.07422.
    [22] MIAO Z, LIU H, SHI W, et al. Modality-aware style adaptation for RGB-infrared person re-identification[C]//Proceedings of the International Joint Conference on Artificial Intelligence. New York: ACM, 2021: 916-922.
    [23] LING Y G, LUO Z M, LIN Y J, et al. A multi-constraint similarity learning with adaptive weighting for visible-thermal person re-identification[C]//Proceedings of the International Joint Conference on Artificial Intelligence. New York: ACM, 2021: 845-851.
    [24] ZHAO Z W, LIU B, CHU Q, et al. Joint color-irrelevant consistency learning and identity-aware modality adaptation for visible-infrared cross modality person re-identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021, 35(4): 3520-3528. doi: 10.1609/aaai.v35i4.16466
    [25] CHEN Y, WAN L, LI Z H, et al. Neural feature search for RGB-infrared person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 587-597.
    [26] WU Q, DAI P Y, CHEN J, et al. Discover cross-modality nuances for visible-infrared person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 4328-4337.
    [27] TIAN X D, ZHANG Z Z, LIN S H, et al. Farewell to mutual information: Variational distillation for cross-modal person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 1522-1531.
    [28] YE M, WANG Z, LAN X, et al. Visible thermal person re-identification via dual-constrained top-ranking[C]//Proceedings of the International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 1092-1099.
    [29] LIU H J, TAN X H, ZHOU X C. Parameter sharing exploration and hetero-center based triplet loss for visible-thermal person re-identification[EB/OL]. (2020-14-04)[2022-03-20]. https://arxiv.org/abs/2008.06223.pdf.
    [30] NGUYEN D T, HONG H G, KIM K W, et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605. doi: 10.3390/s17030605
    [31] WANG P Y, ZHAO Z C, SU F, et al. Deep multi-patch matching network for visible thermal person re-identification[J]. IEEE Transactions on Multimedia, 2021, 23: 1474-1488. doi: 10.1109/TMM.2020.2999180
    [32] YE M, SHEN J B, LIN G J, et al. Deep learning for person re-identification: A survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893. doi: 10.1109/TPAMI.2021.3054775
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  67
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-11-21
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答