留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于注意力机制与条件卷积的行人重识别方法

姬广凯 王蓉 彭舒凡

姬广凯,王蓉,彭舒凡. 基于注意力机制与条件卷积的行人重识别方法[J]. 北京航空航天大学学报,2024,50(2):655-662 doi: 10.13700/j.bh.1001-5965.2022.0454
引用本文: 姬广凯,王蓉,彭舒凡. 基于注意力机制与条件卷积的行人重识别方法[J]. 北京航空航天大学学报,2024,50(2):655-662 doi: 10.13700/j.bh.1001-5965.2022.0454
JI G K,WANG R,PENG S F. Person re-identification method based on attention mechanism and CondConv[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):655-662 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0454
Citation: JI G K,WANG R,PENG S F. Person re-identification method based on attention mechanism and CondConv[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):655-662 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0454

基于注意力机制与条件卷积的行人重识别方法

doi: 10.13700/j.bh.1001-5965.2022.0454
基金项目: 国家自然科学基金(62076246)
详细信息
    通讯作者:

    E-mail: dbdxwangrong@163.com

  • 中图分类号: V221+.3;TB553

Person re-identification method based on attention mechanism and CondConv

Funds: National Natural Science Foundation of China (62076246)
More Information
  • 摘要:

    行人重识别是计算机视觉领域的一个重要部分,但是容易受到行人图片实际采集环境的影响,导致行人特征表达不充分,进一步导致模型精度不高。提出一种基于注意力机制和条件卷积改进的行人重识别方法,使行人特征得到更充分的表达。将注意力机制引入特征提取网络ResNet50中,对输入图像空间和通道上的关键信息进行加权强化,同时抑制可能的噪声;将条件卷积模块引入主干网络,动态调整卷积核参数,使模型能够在保持高效推理的同时提高容量和性能;利用 Market1501、MSMT17和DukeMTMC-ReID主流数据集对改进方法进行评估,Rank1分别提升1.1%、2.4%、1.3%,mAP分别提升0.5%、2.3%、1.3%,结果表明:改进方法能够使行人特征得到更好的表达,识别精度得到提升。

     

  • 图 1  CTL 网络模型

    Figure 1.  CTL network model

    图 2  改进后的CTL网络模型

    Figure 2.  Improved CTL network model

    图 3  CBAM-ResNet50网络结构

    Figure 3.  CBAM-ResNet50 network structure

    图 4  CBAM 结构

    Figure 4.  Structure of CBAM

    图 5  条件卷积模块结构图

    Figure 5.  Structure of CondConv model

    图 6  数据集Market1501[13]上的CMC曲线对比

    Figure 6.  CMC curve comparison chart on dataset Market1501[13]

    图 7  数据集MSMT17[14]上的CMC曲线对比

    Figure 7.  CMC curve comparison chart on dataset MSMT17[14]

    图 8  数据集DukeMTMC-ReID[15]上的CMC曲线对比

    Figure 8.  CMC curve comparison chart on dataset DukeMTMC-ReID[15]

    表  1  引入条件卷积前后参数量与计算量对比

    Table  1.   Comparison of number of parameters and flops before and after introduction of CondConv

    模块 参数量 计算量
    Basic Layer3 7098368 959119360
    CondConv Layer3 3564050 506139136
    Basic Layer4 14964736 529301504
    CondConv Layer4 7891465 302813696
    下载: 导出CSV

    表  2  数据集简介

    Table  2.   Introduction of datasets

    数据集 公开年份 摄像机数/个 ID数 图片数量/张 评测
    Market1501[13] 2015 6 1501 32668 CMC+mAP
    MSMT17[14] 2018 15 4101 126441 CMC+mAP
    DukeMTMC-ReID[15] 2017 8 1404 36411 CMC+mAP
    下载: 导出CSV

    表  3  基于空间通道注意力机制改进后的CTL模型在不同数据集上的性能对比

    Table  3.   Performance comparison of improved CTL model based on CBAM attention mechanism on different datasets %

    模型 Rank-1 mAP
    Market1501[13] MSMT17[14] DukeMTMC-ReID[15] Market1501[13] MSMT17[14] DukeMTMC-ReID[15]
    CTL 97.5 89.5 95.4 98.3 91.3 96.1
    引入注意力机制后 98.3 91.0 96.5 98.6 92.9 97.0
    下载: 导出CSV

    表  4  基于条件卷积模块改进后的CTL模型在不同数据集上的性能对比

    Table  4.   Performance comparison of improved CTL model based on CondConv module on different datasets %

    模型 Rank-1 mAP
    Market1501[13] MSMT17[14] DukeMTMC-ReID[15] Market1501[13] MSMT17[14] DukeMTMC-ReID[15]
    CTL 97.5 89.5 95.4 98.3 91.3 96.1
    引入条件卷积后 98.5 90.6 96.2 98.7 92.6 96.8
    下载: 导出CSV

    表  5  基于注意力机制和条件卷积改进后的CTL模型在不同数据集上的性能对比

    Table  5.   Performance comparison of improved CTL model based on attention mechanism and CondConv on different datasets %

    模型 Rank-1 mAP
    Market1501[13] MSMT17[14] DukeMTMC-ReID[15] Market1501[13] MSMT17[14] DukeMTMC-ReID[15]
    CTL 97.5 89.5 95.4 98.3 91.3 96.1
    同时引入注意力机制和条件卷积后 98.6 91.9 96.7 98.8 93.6 97.4
    下载: 导出CSV

    表  6  改进方法与最新方法的性能比较

    Table  6.   Performance comparison between improved method and latest methods %

    方法 Rank-1 mAP
    Market1501[13] MSMT17[14] DukeMTMC-ReID[15] Market1501[13] MSMT17[14] DukeMTMC-ReID[15]
    CDNet[4] 95.1 78.9 88.6 86.0 54.7 76.8
    OSNet[6] 94.8 79.1 88.7 86.7 55.1 76.6
    PAT[16] 95.4 88.8 88.0 78.2
    HLGAT[17] 97.5 92.7 93.4 87.3
    CTL 97.5 89.5 95.4 98.3 91.3 96.1
    CTL +CBAM 98.3 91.0 96.5 98.6 92.9 97.0
    CTL +CondConv 98.5 90.6 96.2 98.7 92.6 96.8
    CTL+CBAM+CondConv 98.6 91.9 96.7 98.8 93.6 97.4
    下载: 导出CSV
  • [1] MING Z Q, ZHU M K, WANG X K, et al. Deep learning-based person re-identification methods: A survey and outlook of recent works[J]. Image and Vision Computing, 2022, 119: 104394.
    [2] 孙义博, 张文靖, 王蓉, 等. 基于通道注意力机制的行人重识别方法[J]. 北京航空航天大学学报, 2022, 48(5): 881-889. doi: 10.13700/j.bh.1001-5965.2020.0684

    SUN Y B, ZHANG W J, WANG R, et al. Pedestrian re-identification method based on channel attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 881-889 (in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0684
    [3] WIECZOREK M, RYCHALSKA B, DąBROWSKI J. On the unreasonable effectiveness of centroids in image retrieval[C]//Neural Information Processing: 28th International Conference. Berlin: Springer, 2021: 212-223.
    [4] LI H J, WU G J, ZHENG W S. Combined depth space based architecture search for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 6729-6738.
    [5] YAN C, PANG G S, BAI X, et al. Beyond triplet loss: Person re-identification with fine-grained difference-aware pairwise loss[J]. IEEE Transactions on Multimedia, 2021, 24: 1665-1677.
    [6] ZHOU K Y, YANG Y X, CAVALLARO A, et al. Learning generalisable omni-scale representations for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 5056-5069.
    [7] 张晓伟, 吕明强, 李慧. 基于局部语义特征不变性的跨域行人重识别[J]. 北京航空航天大学学报, 2020, 46(9): 1682-1690.

    ZHANG X W, LYU M Q, LI H. Cross-domain person re-identification based on partial semantic feature invariance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(9): 1682-1690 (in Chinese).
    [8] LIU J W, ZHA Z J, WU W, et al. Spatial-temporal correlation and topology learning for person re-identification in videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 4370-4379.
    [9] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision. Munich: ECCV, 2018: 3-19.
    [10] YANG B, BENDER G, LE Q V, et al. Condconv: Conditionally parameterized convolutions for efficient inference[EB/OL]. (2019-01-10) [2022-02-19]. https://arxiv.org/abs/1904.04071.html.
    [11] WIECZOREK M, MICHALOWSKI A, WROBLEWSKA A, et al. A strong baseline for fashion retrieval with person re-identification models[C]//International Conference on Neural Information Processing. Berlin: Springer, 2020: 294-301.
    [12] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: A unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 815-823.
    [13] ZHENG L, SHEN L, TIAN L Y, et al. Scalable person re-identification: A benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1116-1124.
    [14] WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018 : 79-88.
    [15] ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by gan improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3754-3762.
    [16] LI Y L, HE J F, ZHANG T Z, et al. Diverse part discovery: Occluded person re-identification with part-aware trans-former[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 2898–2907.
    [17] ZHANG Z, ZHANG H J, LIU S. Person re-identification using hetero-geneous local graph attention networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 12136–12145.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  811
  • HTML全文浏览量:  101
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 录用日期:  2022-10-06
  • 网络出版日期:  2022-10-10
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答