留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于损失平滑的对抗样本攻击方法

黎妹红 金双 杜晔

黎妹红,金双,杜晔. 基于损失平滑的对抗样本攻击方法[J]. 北京航空航天大学学报,2024,50(2):663-670 doi: 10.13700/j.bh.1001-5965.2022.0478
引用本文: 黎妹红,金双,杜晔. 基于损失平滑的对抗样本攻击方法[J]. 北京航空航天大学学报,2024,50(2):663-670 doi: 10.13700/j.bh.1001-5965.2022.0478
LI M H,JIN S,DU Y. Adversarial attack method based on loss smoothing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):663-670 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0478
Citation: LI M H,JIN S,DU Y. Adversarial attack method based on loss smoothing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):663-670 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0478

基于损失平滑的对抗样本攻击方法

doi: 10.13700/j.bh.1001-5965.2022.0478
基金项目: 国家重点研发计划项目(2020YFB2103800,2020YFB2103802)
详细信息
    通讯作者:

    E-mail:mhli1@bjtu.edu.cn

  • 中图分类号: V221+.3;TP309;TP391.41

Adversarial attack method based on loss smoothing

Funds: National Key R&D Program of China (2020YFB2103800,2020YFB2103802)
More Information
  • 摘要:

    深度神经网络(DNNs)容易受到对抗样本的攻击,现有基于动量的对抗样本生成方法虽然可以达到接近100%的白盒攻击成功率,但是在攻击其他模型时效果仍不理想,黑盒攻击成功率较低。针对此,提出一种基于损失平滑的对抗样本攻击方法来提高对抗样本的可迁移性。在每一步计算梯度的迭代过程中,不直接使用当前梯度,而是使用局部平均梯度来累积动量,以此来抑制损失函数曲面存在的局部振荡现象,从而稳定更新方向,逃离局部极值点。在ImageNet数据集上的大量实验结果表明:所提方法与现有基于动量的方法相比,在单个模型攻击实验中的平均黑盒攻击成功率分别提升了38.07%和27.77%,在集成模型攻击实验中的平均黑盒攻击成功率分别提升了32.50%和28.63%。

     

  • 图 1  非平滑损失曲面示例

    Figure 1.  Example of non-smooth loss function surface

    图 2  本文方法框架图

    Figure 2.  Frame diagram of the proposed method

    图 3  不同对抗攻击方法关系

    Figure 3.  Relationship between different adversarial attack methods

    图 4  邻域范围上界与攻击成功率关系

    Figure 4.  Relationship between upper bound of neighborhood and attack success rate

    图 5  邻域内采样的样本数量与攻击成功率关系

    Figure 5.  Relationship between number of sampled in neighborhood and attack success rate

    表  1  单个模型攻击实验中不同方法的攻击成功率

    Table  1.   Success rates in single model setting by various adversarial attack methods %

    模型 攻击方法 Inc-v3[27] Inc-v4[28] IncRes-v2[28] Res-101[29] Inc-v3ens3[30] Inc-v3ens4[30] IncRes-v2ens[30]
    Inc-v3[27] MI-FGSM[19] 100.0* 45.1 41.9 35.5 13.5 12.9 6.3
    LS-MI-FGSM 99.8* 85.8 84.7 77.3 56.7 54.2 36.1
    NI-FGSM[20] 100.0* 51.7 48.4 41.0 12.5 13.5 5.7
    LS-NI-FGSM 100.0* 79.2 77.5 69.8 38.9 39.1 23.8
    Inc-v4[28] MI-FGSM[19] 56.8 99.8* 46.3 41.4 16.9 14.5 7.8
    LS-MI-FGSM 88.2 98.1* 84.0 76.8 60.6 59.9 46.5
    NI-FGSM[20] 65.0 100.0* 52.4 46.1 16.4 13.1 7.1
    LS-NI-FGSM 86.3 99.8* 80.2 72.2 48.3 47.2 33.8
    IncRes-v2[28] MI-FGSM[19] 59.2 51.9 97.8* 45.4 22.3 16.6 12.3
    LS-MI-FGSM 84.5 82.8 94.8* 79.6 66.6 62.0 60.1
    NI-FGSM[20] 62.5 54.4 98.9* 46.4 20.7 15.9 10.1
    LS-NI-FGSM 85.4 83.5 99.1* 76.2 54.9 50.5 43.4
    Res-101[29] MI-FGSM[19] 59.1 51.0 49.2 99.2* 25.0 21.6 13.2
    LS-MI-FGSM 84.7 80.8 79.9 99.5* 68.7 64.6 54.3
    NI-FGSM[20] 64.7 57.9 56.5 99.4* 23.5 21.0 11.6
    LS-NI-FGSM 82.2 77.4 78.2 99.7* 59.6 53.6 43.4
     注:*表示白盒攻击,其余为黑盒攻击。
    下载: 导出CSV

    表  2  集成模型攻击实验中不同方法的攻击成功率

    Table  2.   Success rates in multi-model setting by various adversarial attack methods %

    攻击方法 Inc-v3[27] Inc-v4[28] IncRes-v2[28] Res-101[29] Inc-v3ens3[30] Inc-v3ens4[30] IncRes-v2ens[30]
    MI-FGSM[19] 100.0* 99.7* 99.4* 99.9* 48.2 42.8 28.5
    LS-MI-FGSM 99.8* 99.4* 98.8* 99.7* 82.5 78.3 56.2
    NI-FGSM[20] 100.0* 99.9* 99.8* 100.0* 45.5 41.0 25.4
    LS-NI-FGSM 100.0* 100.0* 100.0* 99.9* 74.3 70.6 52.9
     注:*表示白盒攻击,其余为黑盒攻击。
    下载: 导出CSV
  • [1] CHEN L Y, LI S B, BAI Q, et al. Review of image classification algorithms based on convolutional neural networks[J]. Remote Sensing, 2021, 13(22): 4712-4730. doi: 10.3390/rs13224712
    [2] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital Signal Processing, 2021, 126: 512-523.
    [3] YUAN X H, SHI J F, GU L C. A review of deep learning methods for semantic segmentation of remote sensing imagery[J]. Expert Systems with Applications, 2021, 169: 114417.
    [4] CHAKRABORTY A, ALAM M, DEY V, et al. A survey on adversarial attacks and defences[J]. CAAI Transactions on Intelligence Technology, 2021, 6(1): 25-45.
    [5] GUO Y J, WEI X X, WANG G Q, et al. Meaningful adversarial stickers for face recognition in physical world[J]. IEEE Ṫransaction on Pattern Analysis and Machine Intelligence, 2023, 45(3): 2711-2725.
    [6] LIU A S, LIU X L, FAN J X, et al. Perceptual-sensitive GAN for generating adversarial patches[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washton, D.C.: AAAI, 2019, 33(1): 1028-1035.
    [7] SHU M, LIU C, QIU W, et al. Identifying model weakness with adversarial examiner[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2022: 11998-12006.
    [8] WANG Y, MA X, BAILEY J, et al. On the convergence and robustness of adversarial training[C]//Proceedings of the 36rd International Conference on Machine Learning. New York: ICML, 2019: 11426-11438.
    [9] DEMONTIS A, MELIS M, PINTOR M, et al. Why do adversarial attacks transfer? Explaining transferability of evasion and poisoning attacks[C]//Proceedings of the 28th USENIX Conference on Security Symposium. New York: ACM, 2018: 321-338.
    [10] GOODFELLOW I J, SHLENS J, SZEGEDY C . Explaining and harnessing adversarial examples[C]//Proceedings of the 3rd International Conference on Learning Representations. Washington, D.C.: ICLR, 2015: 1-11.
    [11] KURAKIN A, GOODFELLOW I, BENGIO S . Adversarial examples in the physical world[C]//Proceedings of the 5th International Conference on Learning Representations. Washington, D.C.: ICLR, 2017: 99-112.
    [12] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]//Proceedings of Machine Learning Research. Baltimore: MD, 2017, 162: 52-65.
    [13] BAI T, LUO J Q, ZHAO J, et al. Recent advances in adversarial training for adversarial robustness[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2021: 4312-4321.
    [14] CHEN J X, FENG X, JIANG L, et al. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network[J]. Energy, 2021, 227(9): 1-8.
    [15] LIU Y L, GAO Y, YIN W . An improved analysis of stochastic gradient descent with momentum[C]//Proceedings of the 34th Conference on Neural Information Processing Systems. Cambridge: NeurIPS, 2020: 18261-18271.
    [16] QU G N, LI N . Accelerated distributed nesterov gradient descent[J]. IEEE Transactions on Automatic Control, 2020, 65(6): 2566-2581.
    [17] HANG J, HAN K J, CHEN H, et al. Ensemble adversarial black-box attacks against deep learning systems[J]. Pattern Recognition, 2019, 101: 107184.
    [18] YANG K, YAU J, FEI-FEI L, et al. A study of face obfuscation in imageNet[C]//Proceedings of the 39rd International Conference on Machine Learning. New York: ICML, 2022.
    [19] DONG Y, LIAO F, PANG T, et al. Boosting adversarial attacks with mommtum[C]//Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 9185-9193.
    [20] LIN J D, SONG C B, HE K, et al. Nesterov accelerated gradient and scale invariance for improving transferability of adversarial examples[C]//Proceedings of the 8th International Conference on Learning Representations. Washington, D.C.: ICLR, 2019: 1-12.
    [21] STUTZ D, HEIN M, SCHIELE B. Disentangling adversarial robustness and generalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: CVPR, 2019: 6976-6987.
    [22] TRAMER F, KURAKIN A, PAPERNOT N, et al. Ensemble adversarial training: Attacks and defenses[C]//Proceedings of the 6th International Conference on Learning Representations. Washington, D.C.: ICLR, 2018: 1-22.
    [23] KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial machine learning at scale[C]//Proceedings of the International Conference on Learning Representations. Washington, D.C.: ICLR, 2016: 1-17
    [24] GUO C, RANA M, CISSE M, et al. Countering adversarial images using input transformations[C]//Proceedings of the International Conference on Learning Representations. Washington, D.C.: ICLR, 2018: 1-12.
    [25] XIE C H, WANG J Y, ZHANG Z S, et al. Mitigating adversarial effects through randomization[C]//Proceedings of the 6th International Conference on Learning Representations. Washington, D.C.: ICLR, 2018: 1-16.
    [26] LIAO F Z, LIANG M, DONG Y P, et al. Defense against adversarial attacks using high-Level representation guided denoiser[C]//Proceedings of the 31th IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake: CVPR, 2018: 1778-1787.
    [27] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 2818-2826.
    [28] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-resNet and the impact of residual connections on learning[J]. CoRR, 2016, 31(4): 4278-4284.
    [29] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake:CVPR, 2016: 770-778.
    [30] WANG H J,WANG Y S. Self-ensemble adversarial training for improved robustness[C]//Proceedings of the International Conference on Learning Representations. Washington, D.C.: ICLR, 2021:1-18.
    [31] LIU Y P, CHEN X Y, LIU C, et al. Delving into transferable adversarial examples and black-box attacks[C]//Proceedings of the 5th International Conference on Learning Representations. Washington, D.C.: ICLR, 2017: 1-24.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1439
  • HTML全文浏览量:  92
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-11
  • 录用日期:  2022-09-06
  • 网络出版日期:  2022-09-15
  • 整期出版日期:  2024-02-27

目录

    /

    返回文章
    返回
    常见问答