Volume 44 Issue 1
Jan.  2018
Turn off MathJax
Article Contents
TAN Jianfeng, SUN Yiming, WANG Haowen, et al. Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 50-62. doi: 10.13700/j.bh.1001-5965.2017.0033(in Chinese)
Citation: TAN Jianfeng, SUN Yiming, WANG Haowen, et al. Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 50-62. doi: 10.13700/j.bh.1001-5965.2017.0033(in Chinese)

Analysis of rigid coaxial rotor unsteady interactional aerodynamic loads

doi: 10.13700/j.bh.1001-5965.2017.0033
Funds:

National Natural Science Foundation of China 11502105

Natural Science Foundation of Jiangsu Province BK20161537

The General Project of Natural Science Research of Higher Education Institutions of Jiangsu Province, China 15KJB130004

More Information
  • Corresponding author: TAN Jianfeng, E-mail: Jianfengtan@njtech.edu.cn
  • Received Date: 18 Jan 2017
  • Accepted Date: 11 Aug 2017
  • Publish Date: 20 Jan 2018
  • The maximum forward speed for helicopter increases by adopting rigid coaxial rotor system, while the vibration load in rotor system obviously increases. In order to analyze the vibration characteristics of high-speed rigid coaxial rotor system, it is necessary to investigate unsteady aerodynamic loads of rigid coaxial rotor with aerodynamic interaction. Therefore, a rotor reverse flow aerodynamic model is established based on an unsteady panel method through satisfying boundary conditions of blade leading-edge and trailing-edge to reflect the influence of the reverse flow on the retreating side of the high-speed coaxial rotor. Moreover, a rigid coaxial rotor tip-vortex-blade aerodynamic model is added to describe the influence of aerodynamic interaction between the coaxial rotors. Coupling those models with the wake model of coaxial rotor based on a viscous vortex particle method, an unsteady aerodynamic analysis method under aerodynamic interaction of high-speed rigid coaxial rotor is established. The aerodynamic load at characteristic span of X2 rigid coaxial rotor is simulated during forward flight, and compared with the results of PRASADUM and CFD/CSD based on NASA OVERFLOW and CREATE AV Helios to validate the effectiveness of the present unsteady aerodynamic analysis method. Compared to PRASADUM, the present method better describes the variation characteristics of unsteady airloads of the upper and lower rotors on the advancing and retreading sides, and the results agree better with the computational results of CFD/CSD. Finally, the influence of aerodynamic interaction between the X2 upper and lower rotors on the unsteady aerodynamic loads is analyzed, and the difference of unsteady aerodynamic load between the single rotor and coaxial rotor is also investigated. It is shown that the unsteady aerodynamic load of rigid coaxial rotor is affected obviously by the tip vortex of coaxial rotor at low speed, while it is influenced by coaxial rotor blade at high speed. The characteristic of aerodynamic load of coaxial rotor is radial distribution with number of blades at high speed.

     

  • loading
  • [1]
    ELLER E. X2TM load alleviating controls[C]//The American Helicopter Society 68th Annual Forum. Fairfax, VA: AHS, 2012: 1578-1587.
    [2]
    TAN J F, WANG H W.Highly efficient unsteady panel time-marching free wake for aerodynamics of rotorcraft[J].Journal of Aircraft, 2014, 51(1):54-61. doi: 10.2514/1.C031807
    [3]
    GOVINDARAJAN B M, LEISHMAN J G.Curvature corrections to improve the accuracy of free-vortex methods[J].Journal of Aircraft, 2016, 53(2):378-386. doi: 10.2514/1.C033392
    [4]
    YEO H, JOHNSON W. Investigation of maximum blade loading capability of lift-offset rotors[C]//The AHS 69th Annual Forum. Fairfax, VA: AHS, 2013: 782-797.
    [5]
    SCHMAUS J, CHOPRA I. Aeromechanics for a high advance ratio coaxial helicopter[C]//The AHS 71st Annual Forum. Fairfax, VA: AHS, 2015: 1139-1153.
    [6]
    GAFFEY T M, ZHANG C, QUACKENBUSH D T, et al. Aeromechanics of the coaxial compound helicopter[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: 1-19.
    [7]
    PASSE B, SRIDHARAN A, BAEDER J. Computational investigation of coaxial rotor interactional aerodynamics in steady forward flight[C]//33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: 1-29.
    [8]
    CAO Y H, ZHAO M.Numerical simulation of rotor flowfields based on several spatial discretization schemes[J].Journal of Aircraft, 2012, 49(5):1535-1539. doi: 10.2514/1.C031786
    [9]
    许和勇, 叶正寅.悬停共轴双旋翼干扰流动数值模拟[J].航空动力学报, 2011, 26(2):453-457. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201102035&dbname=CJFD&dbcode=CJFQ

    XU H Y, YE Z Y.Numerical simulation of interaction unsteady flows around co-axial rotors in hover[J].Journal of Aerospace Power, 2011, 26(2):453-457(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkdi201102035&dbname=CJFD&dbcode=CJFQ
    [10]
    叶靓, 徐国华.共轴式双旋翼悬停流场和气动力的CFD计算[J].空气动力学学报, 2012, 30(4):437-442. https://wenku.baidu.com/view/e7db5729192e45361166f50d.html

    YE L, XU G H.Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J].Acta Aerodynamic Sinica, 2012, 30(4):437-442(in Chinese). https://wenku.baidu.com/view/e7db5729192e45361166f50d.html
    [11]
    朱正, 招启军, 李鹏.悬停状态共轴刚性双旋翼非定常流动干扰机理研究[J].航空学报, 2016, 37(2):568-578. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201602020&dbname=CJFD&dbcode=CJFQ

    ZHU Z, ZHAO Q J, LI P.Investigations on unsteady flow interaction mechanism of coaxial rigid rotors in hover[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(2):568-578(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201602020&dbname=CJFD&dbcode=CJFQ
    [12]
    SINGH R, KANG H. Computational investigations of transient loads and blade deformations on coaxial rotor systems[C]//33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: 101-111.
    [13]
    SINGH R, KANG H, BHAGWAT M, et al. Computational and experimental study of coaxial rotor steady and vibratory loads[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016: 1-10.
    [14]
    KOMERATH N M, SMITH M J, TUNG C.A review of rotor wake physics and modeling[J].Journal of the American Helicopter Society, 2011, 56(2):022006-1-022006-21. http://www.ingentaconnect.com/content/ahs/jahs/2011/00000056/00000002/art00006
    [15]
    TAN J F, WANG H W.Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method[J].Aerospace Science and Technology, 2013, 30(1):255-268. doi: 10.1016/j.ast.2013.08.010
    [16]
    HE C J, ZHAO J G.Modeling rotor wake dynamics with viscous vortex particle method[J].AIAA Journal, 2009, 47(4):902-915. doi: 10.2514/1.36466
    [17]
    谭剑锋, 王浩文, 吴超, 等.基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰研究[J].航空学报, 2014, 35(3):643-656. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201403005&dbname=CJFD&dbcode=CJFQ

    TAN J F, WANG H W, WU C, et al.Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):643-656(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201403005&dbname=CJFD&dbcode=CJFQ
    [18]
    谭剑锋.直升机旋翼对尾桨非定常气动载荷的影响[J].航空学报, 2015, 36(10):3228-3240. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201510004&dbname=CJFD&dbcode=CJFQ

    TAN J F.Influence of helicopter rotor on tail rotor unsteady aerodynamic loads[J].Acta Aeronauica et Astronautica Sinica, 2015, 36(10):3228-3240(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hkxb201510004&dbname=CJFD&dbcode=CJFQ
    [19]
    陈全龙, 韩景龙, 员海玮.前行桨叶概念旋翼动力学分析方法[J].航空学报, 2014, 35(9):2451-2460. https://www.wenkuxiazai.com/doc/acfb4232f7ec4afe04a1dfbb-3.html

    CHEN Q L, HAN J L, YUN H W.Analytical method for advancing blade concept rotor dynamics[J].Acta Aeronautica et Astronautica Sincia, 2014, 35(9):2451-2460(in Chinese). https://www.wenkuxiazai.com/doc/acfb4232f7ec4afe04a1dfbb-3.html
    [20]
    袁野, 陈仁良, 李攀.共轴刚性旋翼飞行器配平特性及验证[J].南京航空航天大学学报, 2016, 48(2):186-193. http://www.doc88.com/p-2377625535504.html

    YUAN Y, CHEN R L, LI P.Trim characteristics and verification of coaxial rigid rotor airfraft[J].Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2):186-193(in Chinese). http://www.doc88.com/p-2377625535504.html
    [21]
    HARRINGTON R D. Full-scale-tunnel investigation of the static-thrust performance of a coaxial helicopter rotor: TN-2318[R]. Washington, D. C. : NASA, 1951.
    [22]
    DINGELADEIN R C. Wind-tunnel studies of the performance of multirotor configurations: TN-3236[R]. Washington, D. C. : NASA, 1954.
    [23]
    WALSH D, WEINER S, ARIFIAN K, et al. High airspeed testing of the Sikorsky X2 technology TM demonstrator[C]//The 67th Annual Forum of the AHS International. Fairfax, VA: AHS, 2011: 2999-3010.
    [24]
    高正, 陈仁良.直升机飞行动力学[M].北京:科学出版社, 2003:40-42.

    GAO Z, CHEN R L.Flight dynamics of helicopter[M].Beijing:Science Press, 2003:40-42(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views(908) PDF downloads(610) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return