Volume 43 Issue 5
May  2017
Turn off MathJax
Article Contents
ZHANG Qingsong, CAO Wenjie, LUO Xingna, et al. Analysis method of heat release rate of lithium-ion battery based on domino effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 902-907. doi: 10.13700/j.bh.1001-5965.2016.0383(in Chinese)
Citation: ZHANG Qingsong, CAO Wenjie, LUO Xingna, et al. Analysis method of heat release rate of lithium-ion battery based on domino effect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 902-907. doi: 10.13700/j.bh.1001-5965.2016.0383(in Chinese)

Analysis method of heat release rate of lithium-ion battery based on domino effect

doi: 10.13700/j.bh.1001-5965.2016.0383
Funds:

National Natural Science Foundation of China and the Civil Aviation Administration of China Joint Program U1333123

the Fundamental Research Funds for the Central Universities 3122015D002

More Information
  • Corresponding author: ZHANG Qingsong, E-mail:nkzqsong@126.com
  • Received Date: 09 May 2016
  • Accepted Date: 27 May 2016
  • Publish Date: 20 May 2017
  • The heat release rate of single lithium-ion battery measured by the commonly used experimental method is not able to reflect the heat losses caused by the domino effect and the intermittent changes during the transfer process of a large number of lithium-ion batteries within the air transport package. This paper, instead, proposes a method of equivalent analysis for the heat release rate of lithium-ion battery based on domino effect. Namely, the domino effect and the surface temperature of each battery after the thermal runaway of typical 18650 lithium-ion battery in 3×3 configuration were analyzed with the help of independently designed experimental platform. Using FLUENT to use the standard 18650 lithium-ion battery heat release rate curve for the same experimental conditions of lithium-ion battery thermal runaway simulation. Then dichotomy was used to revise the standard heat release rate to accord the surface temperature of the lithium-ion battery in simulation and in experiment to obtain equivalent heat release rate curve of lithium-ion battery to apply to further simulation. It turned out that the maximum temperature of each battery and the time to reach maximum temperature coincided with the experimental data, verifying the reliability of the revised equivalent heat release rate model. This method can be applied to obtain heat release rate of various types of lithium-ion batteries in different amount of package, therefore guiding the fire prevention and control project in the air transport of lithium-ion battery in practice.

     

  • loading
  • [1]
    WEBSTER H.Fire protection for the shipment of lithium batteries in aircraft cargo compartments:DOT/FAA/AR-09/55[R]. Washington, D.C.:Federal Aviation Administration, 2010:1-4.
    [2]
    FENG X, SUN J, OUYANG M, et al.Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275:261-273 doi: 10.1016/j.jpowsour.2014.11.017
    [3]
    SPINNER N S, FIELD C R, HAMMOND M H, et al.Physical and chemical analysis of lithium-ion battery cell-to-cell failure events inside custom fire chamber[J]. Journal of Power Sources, 2015, 279:713-721 doi: 10.1016/j.jpowsour.2015.01.068
    [4]
    罗星娜, 张青松, 戚瀚鹏, 等.基于计算流体动力学的锂离子电池热失控多米诺效应研究[J].科学技术与工程, 2014, 14(33):327-332. doi: 10.3969/j.issn.1671-1815.2014.33.062

    LUO X N, ZHANG Q S, QI H P, et al.Lithium-ion battery thermal runaway domino effect analysis based on the CFD[J]. Science Technology and Engineering, 2014, 14(33):327-332(in Chinese). doi: 10.3969/j.issn.1671-1815.2014.33.062
    [5]
    张青松, 姜乃文, 罗星娜, 等.锂离子电池热失控多米诺效应实证研究[J].科学技术与工程, 2016, 16(10):252-256. doi: 10.3969/j.issn.1671-1815.2016.10.050

    ZHANG Q S, JIANG N W, LUO X N, et al.Lithium-ion battery thermal runaway domino effect experimental verification research[J]. Science Technology and Engineering, 2016, 16(10):252-256(in Chinese). doi: 10.3969/j.issn.1671-1815.2016.10.050
    [6]
    Standards Policy and Strategy Committee.Reaction-to-fire tests-Heat release, smoke production and mass loss rate:BS ISO 5660-1[S]. London:British Standard Institution, 2015:16-17.
    [7]
    FU Y, LU S, LI K, et al.An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273:216-222. doi: 10.1016/j.jpowsour.2014.09.039
    [8]
    HUANG P, WANG Q, LI K, et al.The combustion behavior of large scale lithium titanate battery[J]. Scientific Reports, 2015, 5:77-88.
    [9]
    PING P, WANG Q, HUANG P, et al.Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method[J]. Applied Energy, 2014, 129:261-273. doi: 10.1016/j.apenergy.2014.04.092
    [10]
    FINEGAN D P, SCHEEL M, ROBINSON J B, et al.In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J/OL]. Nature Communications, 2015, 6:2-4[2016-03-15].http://www.nature.com/ncomms/2015/150428/ncomms7924/full/ncomms7924.html.
    [11]
    FENG X, FANG M, HE X, et al.Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255:294-301. doi: 10.1016/j.jpowsour.2014.01.005
    [12]
    JHU C Y, WANG Y W, WEN C Y, et al.Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries[J]. Journal of Thermal Analysis and Calorimetry, 2011, 106(1):159-163. doi: 10.1007/s10973-011-1452-6
    [13]
    戚瀚鹏, 张青松, 宋广韬.非稳态火源热释放速率等效合成模型研究[J].安全与环境学报, 2015, 15(4):131-134. http://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201504029.htm

    QI H P, ZHANG Q S, SONG G T.Innovated synthesis model of the heat releasing rate for the non-steady state fires[J]. Journal of Safety and Environment, 2015, 15(4):131-134(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201504029.htm
    [14]
    LIU X, STOLIAROV S I, DENLINGER M, et al.Comprehensive calorimetry of the thermally-induced failure of a lithium ion battery[J]. Journal of Power Sources, 2015, 280:516-525. doi: 10.1016/j.jpowsour.2015.01.125
    [15]
    张雯霞. 锂离子电池电解液的锥形量热仪研究[D]. 合肥: 中国科学技术大学, 2015.

    ZHANG W X.Experimental study of electrolytes of lithium ion batteries by cone calorimeter[D]. Hefei:University of Science and Technology of China, 2015(in Chinese).
    [16]
    胡棋威. 锂离子电池热失控传播特性及阻断技术研究[D]. 北京: 中国舰船研究院, 2015.

    HU Q W.Study on lithium-ion batteries thermal runaway propagation characteristics and blocking techniques[D]. Beijing:China Ship Research and Development Academy, 2015(in Chinese).
    [17]
    WU P, ROMBERG J, FENG X, et al.Thermal runaway propagation within module consists of large format li-ion cells[C]//Proceedings of SAE-China Congress 2015:Selected Papers.Beijing:Springer, 2015:127-133.
    [18]
    LAMB J, ORENDORFF C J, STEELE L A M, et al.Failure propagation in multi-cell lithium ion batteries[J]. Journal of Power Sources, 2015, 283:517-5230. doi: 10.1016/j.jpowsour.2014.10.081
    [19]
    HATCHARD T D, MACNEIL D D, STEVENS D A, et al.Importance of heat transfer by radiation in Li-ion batteries during thermal abuse[J]. Electrochemical and Solid-State Letters, 2000, 3(7):305-308.
    [20]
    WANG Q, PING P, ZHAO X, et al.Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208:210-224. doi: 10.1016/j.jpowsour.2012.02.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views(1002) PDF downloads(441) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return