Citation: | HUANG Xin, HU Shuling, NIU Yanxiong, et al. Adaptive threshold detection algorithm of LDV system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 992-997. doi: 10.13700/j.bh.1001-5965.2016.0320(in Chinese) |
Signal detection is the key technology for the high precision of laser Doppler velocimetry (LDV) system. In order to achieve the accurate detection of the weak Doppler signal in LDV, we carried out a band-stop filtering toward the Doppler signal on the ground of the statistical characteristics of the noise in frequency domain. Combined with the constant false alarm rate (CFAR) detection technology of radar, an algorithm of adaptive threshold detection based on the sum of unit square in frequency domain is proposed so as to address the difficulty in signal detection within the atmosphere of low signal noise ratio (SNR), improving the detection performance and decreasing the probability of false alarm. Compared with the fixed threshold through simulations and experiments, this algorithm boasts the advantage of complete detection under the circumstance of SNR -12 dB while maintaining a relatively lower false alarm rate and simple operation as well as great applicability.
[1] |
范哲, 张春熹, 欧攀, 等.车载三波束多普勒激光雷达波束配置研究[J].中国激光, 2014, 41(2):309-314. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201402048.htm
FAN Z, ZHANG C X, OU P, et al.Research on beam pointing angle for three-beam Doppler vehicle lidar[J].Chinese Journal of Lasers, 2014, 41(2):309-314(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201402048.htm
|
[2] |
MARU K, WATANABE K.Non-mechanical scanning laser Doppler velocimetry with sensitivity to direction of transverse velocity component using optical serrodyne frequency shifting[J].Optics Communications, 2014, 319(9):80-84. https://www.researchgate.net/publication/259994751_Non-mechanical_scanning_laser_Doppler_velocimetry_with_sensitivity_to_direction_of_transverse_velocity_component_using_optical_serrodyne_frequency_shifting
|
[3] |
QUI H, SOMMERFELD M, DURST F.Two novel Doppler signal detection methods for laser Doppler and phase Doppler anemometry[J].Measurement Science & Technology, 1998, 5(7):769-778. doi: 10.1088/0957-0233/5/7/002
|
[4] |
AYDIN N.DWT based adaptive threshold determination in embolic signal detection[C]//NASA/ESA Conference on Adaptive Hardware and Systems. Piscataway, NJ:IEEE Press, 2007:214-219.
|
[5] |
GONÇALVES I B, LEIRIA A, MOURA M M.STFT or CWT for the detection of Doppler ultrasound embolic signals[J].International Journal for Numerical Methods in Biomedical Engineering, 2013, 29(9):964-976. doi: 10.1002/cnm.v29.9
|
[6] |
MAALI A, MESLOUB A, DJEDDOU M, et al.Adaptive CA-CFAR threshold for non-coherent IR-UWB energy detector receivers[J].IEEE Communications Letters, 2010, 13(12):959-961. http://ieeexplore.ieee.org/document/5353276/
|
[7] |
MATA-MOYA D, DEL-REY-MAESTRE N, JARABO-AMORES M P, et al.An adaptive threshold technique for the LR detector in K-clutter.Validation using IPIX radar[C]//Instrumentation and Measurement Technology Conference.Piscataway, NJ:IEEE Press, 2015:794-799.
|
[8] |
AUBRY A, DE MAIO A, ORLANDO D, et al.Adaptive detection of point-like targets in the presence of homogeneous clutter and subspace interference[J].IEEE Signal Processing Letters, 2014, 21(7):848-852. doi: 10.1109/LSP.2014.2309434
|
[9] |
XIAO Y, CUI G, YI W, et al.Adaptive detection and estimation for an unknown occurring interval signal in correlated Gaussian noise[J].Signal Processing, 2015, 108(2):440-450. http://www.sciencedirect.com/science/article/pii/S0165168414004708
|
[10] |
AALO V A PEPPAS K P, EFTHYMOGLOU G.Performance of CA-CFAR detectors in nonhomogeneous positive alpha-stable clutter[J].IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3):2027-2038. http://www.academia.edu/13451431/Performance_of_CA_-_CFAR_Detectors_in_Nonhomogeneous_Positive_Alpha_-_Stable_Clutter
|
[11] |
XU Y, YAN S, MA X, et al.Fuzzy soft decision CFAR detector for the K distribution data[J].IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(4):3001-3013. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7376233
|
[12] |
张晓永, 王勇, 陈锋.LFMCW激光雷达门限检测技术[J].四川兵工学报, 2012, 33(2):120-122. http://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201202043.htm
ZHANG X Y, WANG Y, CHEN F.Threshold detection technology of ladar[J].Sichuan Ordnance Journal, 2012, 33(2):120-122(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201202043.htm
|
[13] |
徐从安, 何友, 简涛, 等.空域CFAR处理方法综述[J].海军航空工程学院学报, 2011, 26(4):414-418. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201104012.htm
XU C A, HE Y, JIAN T, et al.Survey of space CFAR processing[J].Journal of Naval Aeronautical and Astonautical University, 2011, 26(4):414-418(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK201104012.htm
|
[14] |
何友, 关键, 孟祥伟, 等.雷达自动检测和CFAR处理方法综述[J].系统工程与电子技术, 2001, 23(1):9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200101002.htm
HE Y, GUAN J, MENG X W, et al.Survey of automatic radar detection and CFAR processing[J].Systems Engineering and Electronics, 2001, 23(1):9-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD200101002.htm
|
[15] |
周健, 姚宝聚, 龙兴武.激光多普勒信号渡越加宽研究[J].红外与激光工程, 2011, 40(5):826-829. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201105012.htm
ZHOU J, YAO B J, LONG X W.Research on transit broading of laser Doppler signal[J].Infrared and Laser Engineering, 2011, 40(5):826-829(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201105012.htm
|