Li Yan, Wang Huiwen, Ye Ming, et al. Modifiable Squeezer cluster algorithm used in large-scale matrix[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1499-1502. (in Chinese)
Citation: LI Jinglin, CHEN Wanchun, MIN Changwanet al. Terminal hypersonic trajectory modeling and optimization for maneuvering penetration and precision strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 556-567. doi: 10.13700/j.bh.1001-5965.2017.0308(in Chinese)

Terminal hypersonic trajectory modeling and optimization for maneuvering penetration and precision strike

doi: 10.13700/j.bh.1001-5965.2017.0308
More Information
  • Corresponding author: CHEN Wanchun, E-mail: wanchun_chen@buaa.edu.cn
  • Received Date: 15 May 2017
  • Accepted Date: 11 Aug 2017
  • Publish Date: 20 Mar 2018
  • Aimed at the maneuvering penetration and precision strike problem of hypersonic vehicle terminal trajectory, an optimal maneuvering trajectory optimization method considering the dynamic characteristics of intercepting was proposed from the viewpoint of optimal control, so as to obtain the maximum maneuverability of hypersonic vehicles. In this paper, the intercepting missile model was introduced into the model of penetration trajectory optimization, and a constraint was imposed to restrict the intercepting missile to fly according to the proportional guidance law. The trajectories were divided into phases according to the different missions and trajectory characteristics of the belligerents. The penetration performance index and the precision strike performance index are put forward according to the task and characteristics of each phase, and by the weighting function the independent and contradictory performance indicators are unified. Thus a multi-object, multi-phase and multi-constrained maneuvering penetration trajectory optimization model was established. And multiphase Radau pseudospectral method (MRPM) was used to solve the problem. Due to the initial sensitivity and narrow feasible region of the problem, a series of trajectory optimization strategies were proposed to improve the convergence rate and the precision of the solution. Finally, the optimal maneuvering trajectory was obtained, and the optimality of the solution was verified based on the principle of costate mapping. The results show that the method can give full play to the maneuverability of the hypersonic vehicle, and obtain the penetration trajectory which satisfies the terminal accuracy. Compared with the existing method, the miss distance is increased by 1-2 orders of magnitude. Sensitivity analysis shows that the trajectory is insensitive to the launch time of the interceptor.

     

  • [1]
    陈万春, 聂蓉梅, 刘佳琪, 等.PAC-3爱国者拦截弹末制导精度仿真研究[J].飞航导弹, 1999, 19(7):57-62.

    CHEN W C, NIE R M, LIU J Q, et al.Simulation and research on the terminal guidance precision of PAC-3 patriot missile[J].Winged Missiles Journal, 1999, 19(7):57-62(in Chinese).
    [2]
    崔静, 姜玉宪.拦截导弹动力学特性对摆动式机动策略突防效果的影响[J].宇航学报, 2001, 22(5):33-38.

    CUI J, JIANG Y X.The effect of interceptor's dynamic system order on the penetration efficiency of weaving maneuver strategy[J].Journal of Astronautics, 2001, 22(5):33-38(in Chinese).
    [3]
    姜玉宪, 崔静.导弹摆动式突防策略的有效性[J].北京航空航天大学学报, 2002, 28(2):133-136.

    JIANG Y X, CUI J.Effectiveness of weaving maneuver strategy of a missile[J].Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(2):133-136(in Chinese).
    [4]
    ZARCHAN P.Proportional navigation and weaving targets[J].Journal of Guidance, Control, and Dynamics, 1995, 18(5):969-974. doi: 10.2514/3.21492
    [5]
    SHINAR J, STEIBERG D.Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model[J]. Journal of Aircraft, 1977, 14(8):795-802. doi: 10.2514/3.58855
    [6]
    SHINAR J, TABAK R.New results in optimal missile avoidance[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(5):897-902. doi: 10.2514/3.21287
    [7]
    YANUSHEVSKY R.Analysis of optimal weaving frequency of maneuvering targets[J].Journal of Spacecraft and Rockets, 2004, 41(3):477-479. doi: 10.2514/1.6459
    [8]
    IMADO F.Some aspects of a realistic three-dimensional pursuit-evasion game[J].Journal of Guidance, Control, and Dynamics, 1993, 16(2):125-139. doi: 10.2514/3.21002
    [9]
    IMADO F, UEHARA S.High-g barrel roll maneuvers against proportional navigation from optimal control, viewpoint[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):876-881. doi: 10.2514/2.4351
    [10]
    IMADO F, KURODA T. Engagement tactics for two missiles against an optimally maneuvering aircraft[J].Journal of Guidance, Control, and Dynamics, 2011, 34(2):574-582. doi: 10.2514/1.49079
    [11]
    BENSON D A, THORVALDSEN G T, RAO A V.Direct trajectory optimization and costate estimation via an orthogonal collocation method[J].Journal of Guidance, Control, and Dynamics, 2006, 29(6):1435-1440. doi: 10.2514/1.20478
    [12]
    HUNTINGTON G T, RAO A V.Optimal reconfiguration of spacecraft formation via a Gauss pseudospectral method[J].Journal of Guidance, Control, and Dynamics, 2008, 31(3):689-698. doi: 10.2514/1.31083
    [13]
    ZHANGK N, CHEN W C. Reentry vehicle constrained trajectory optimization[C]//Proceedings of AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011, 1: 1-16.
    [14]
    DARBY C L, RAO A V.Minimum-fuel low earth orbit aeroassisted orbital transfer of small spacecraft[J].Journal of Spacecraft and Rocket, 2011, 48(4):618-628. doi: 10.2514/1.A32011
    [15]
    WEISS M, SHIMA T, CASTANEDA D, et al.Minimum effort intercept and evasion guidance algorithms for active aircraft defense[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10):2297-2311. doi: 10.2514/1.G000558
    [16]
    DIVIA G. Advances in global pseudospectral methods for optimal control[D]. Gainesville: University of Floroda, 2011: 92-96.
    [17]
    ZARCHAN P.Tactical and strategic missile guidance[M]. 6th ed. Reston:AIAA, 2012:117-122.
  • Relative Articles

    [1]ZHANG F X,GAO T,WU H D. Improved chimpanzee search algorithm based on multi-strategy fusion and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):235-247 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0891.
    [2]YAO Jieke, YU Zhanggui, WANG Chenying. Analysis for yawing aerodynamic characteristics of medium to low aspect ratio blended-wing-body configuration and the study on optimization for aerodynamic stability enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0893
    [3]LI J G,CHEN X,DONG Y F,et al. RTPN interception guidance law for maneuvering target based on collaborative filtering trajectory prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):86-96 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0211.
    [4]SUN Bo, ZHANG Wenpeng, WU Zexuan, SU Yebo, WEI Ming. Three-dimensional path planning of UAV based on multi-strategy golf optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0429
    [5]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [6]WU Wei, LIN Zhiyi, WANG Xinglong. Research on evolutionary game of subsidy strategy on multi-airport route network under homogeneous competition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0477
    [7]ZHANG Z B,JING S Z,YUAN S P,et al. Robust analysis of hydrodynamic performance under variable rotation speeds[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1219-1228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0480.
    [8]HE J W,XU X Z,GAO B. Improved moth-flame optimization algorithm with multi-strategy integration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2862-2871 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0707.
    [9]DUAN J Z,WANG C J. Sensitivity encoding reconstruction algorithm based on multi-category dictionary learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2123-2132 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0571.
    [10]LI Z X,MA M Y,WU J H,et al. Model correction method for CFD numerical simulation under mixed aleatory and epistemic uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2343-2353 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0624.
    [11]WANG P,ZHAO S L,CHEN W C. Cooperative interception strategy for midcourse guidance of GPI based on online prediction of reachable area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3463-3476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0856.
    [12]XU Xingguang, YU Jianglong, GUO Hongfei, REN Zhang. Optimization method of winged aircraft configuration and topology for cooperative penetration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0818
    [13]YIN Q L,CHEN Q,WANG Z Y,et al. Trajectory programming method of gliding-guided projectiles for penetration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3151-3161 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0049.
    [14]DENG Chen, CHEN Gong, AO Hou-jun, REN Si-yuan, DU Wen-tao. Design and implementation of a hardware-in-the-loop simulation system for interceptor composite control system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0703
    [15]ZHANG Hao, ZHU Jian-wen, LI Xiao-ping, BAO Wei-min. Deep reinforcement learning intelligent guidance for intercepting high maneuvering targets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0375
    [16]ZHAO Zhen-wu, XING Xiao-xiao, GENG Shuo. Research on Resilience Measurement and Optimization Strategy of Air Cargo Secure Supply Chain[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0499
    [17]XIE C C,ZHANG D Y,AN C. Reduced order method for large flexible wing structure based on dynamic response data[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1319-1330 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0439.
    [18]ZHANG S,SONG T L,JIAO W,et al. Cooperative guidance method with interception time constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1956-1963 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0569.
    [19]CHEN R H,LUO J,HU A Y,et al. Uniform circular multiphase modulation correlation radiometer and its sensitivity analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1857-1863 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0560.
    [20]MENG G,HUANG H,WU W G,et al. Parasitic rotation of large stroke compliant micro-positioning platform[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):665-673 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0272.
  • Cited by

    Periodical cited type(11)

    1. 段鹏飞,高书亮,王恩亮,王瀚. 吸气式高超声速机动飞行样式及其关键技术分析. 航空兵器. 2024(02): 99-105 .
    2. 盛永智,甘佳豪,张成新. 弹道可调的落角约束分数阶滑模制导律设计. 航空学报. 2023(07): 182-195 .
    3. 蒋庆吉,王小刚,白瑜亮,李瑜. 再入滑翔飞行器俯冲段智能博弈机动策略. 宇航学报. 2023(06): 851-862 .
    4. 陈劭博,严佳民,卜奎晨. 基于脱靶量预测的飞行器反拦截机动方法. 系统工程与电子技术. 2023(09): 2922-2930 .
    5. 郭正玉,董蒙,杜苗苗. 空空导弹空天高超声速攻防对抗的优势与挑战. 航空兵器. 2022(04): 6-10 .
    6. 陈万春,于琦,杨劲,余文斌,杨良. 升力体飞行器全程弹道规划与制导研究进展. 导弹与航天运载技术(中英文). 2022(06): 43-50 .
    7. 张荣升,陈万春. THAAD增程型拦截弹预测制导方法. 北京航空航天大学学报. 2021(04): 863-874 . 本站查看
    8. 毛柏源,张鹏飞. 无人飞行器快速投弹精确命中最优制导研究. 战术导弹技术. 2021(02): 76-80 .
    9. 刘滔,雍恩米,翟岱亮. 面向拦截的高超声速飞行器轨迹预测关键技术综述. 航天控制. 2021(04): 13-21 .
    10. 许俊飞,卢发兴,王航宇,吴玲. 基于PSO的制导炮弹射击修正量分析. 火力与指挥控制. 2020(05): 39-44+50 .
    11. 李世杰,李炯,刘滔,陈文钰. 基于邻域最优控制律的再入轨迹在线修正. 航空兵器. 2020(05): 39-44 .

    Other cited types(2)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(7)

    Article Metrics

    Article views(914) PDF downloads(480) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return