Citation: | WANG Bo, XIE Junwei, ZHANG Jing, et al. Negative ambiguity function characteristics simulation of FDA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 122-132. doi: 10.13700/j.bh.1001-5965.2019.0133(in Chinese) |
Considering that the existing extensive research on frequency diverse array (FDA) is mainly working on the assumption that single-carrier frequency signals are transmitted under narrow-band conditions. And there is a lack of relevant research on the issue whether linear frequency modulation signals are suitable for FDAs. Considering that ambiguity function based optimization is an important means of radar's waveform design, based on the establishment of FDA data model, this paper establishes FDA negative ambiguity function under linear array transmission and single-antenna reception model and analyzes its main characteristics systematically. On this basis, the characteristics of FDA negative ambiguity function based on rectangular pulse, linear frequency modulation (LFM) signal and different nonlinear frequency offset are simulated and compared. The performance of target range-angle two-dimensional joint estimation of FDA using different nonlinear frequency control functions is compared. The simulation results verify that the FDA ambiguity function is correct, and the performance of FDA with sinusoidal frequency offset is the best. This lays an important foundation for the complex signal FDA waveform design based on ambiguity function and the transmission waveform design based on FDA beampatten decoupling technology.
[1] |
ANTONIK P, WICKS W C, GRIFFITHS H D, et al.Frequency diverse array radars[C]//Proceedings of the IEEE Radar Conference.Piscataway, NJ: IEEE Press, 2006: 470-475.
|
[2] |
王文钦, 陈慧, 郑植, 等.频控阵雷达技术及其应用研究进展[J].雷达学报, 2018, 7(2):153-166.
WANG W Q, CHEN H, ZHENG Z, et al.Advances on frequency diverse array radar and its applications[J].Journal of Radars, 2018, 7(2):153-166(in Chinese).
|
[3] |
许京伟, 朱圣棋, 廖桂生, 等.频率分集阵雷达技术探讨[J].雷达学报, 2018, 7(2):167-182.
XU J W, ZHU S Q, LIAO G S, et al.An overview of frequency diverse array radar technology[J].Journal of Radars, 2018, 7(2):167-182(in Chinese).
|
[4] |
陈小龙, 陈宝欣, 黄勇, 等.频控阵雷达空距频聚焦信号处理方法[J].雷达学报, 2018, 7(2):183-193.
CHEN X L, CHEN B X, HUANG Y, et al.Frequency diverse array radar signal processing via space-range-doppler focus(SRDF)method[J].Journal of Radars, 2018, 7(2):183-193(in Chinese).
|
[5] |
JONES A M.Frequency diverse array receiver architectures[D].Dayton, OH: Wright State University, 2011.
|
[6] |
许京伟.频率分集阵列雷达运动目标检测方法研究[D].西安: 西安电子科技大学, 2015.
XU J W.Study on moving target detection with frequency diverse array radar[D].Xi'an: Xidian University, 2015(in Chinese).
|
[7] |
髙宽栋.频控阵雷达阵列优化设计及其目标参数估计方法研究[D].成都: 电子科技大学, 2018.
GAO K D.Research of optimal array design and parameter estimation on frequency diverse array[D].Chengdu: University of Electronic Science and Technology of China, 2018(in Chinese).
|
[8] |
徐艳红.新体制频率分集阵列天线距离/角度域波束研究[D].西安: 西安电子科技大学, 2017.
XU Y H.Research on the beam of new type frequency diverse array in range and angle domains[D].Xi'an: Xidian University, 2017(in Chinese).
|
[9] |
王哲.频控阵波束的距离角度依赖特性研究[D].成都: 电子科技大学, 2018.
WANG Z.Research on range-angle-dependent characteristics of frequency diverse array beampattern[D].Chengdu: University of Electronic Science and Technology of China, 2018(in Chinese).
|
[10] |
熊杰.频控阵发射波束形成及其应用方法研究[D].成都: 电子科技大学, 2018.
XIONG J.Research on transmiting beamforming technology and its applications of frequency diverse array[D].Chengdu: University of Electronic Science and Technology of China, 2018(in Chinese).
|
[11] |
WANG Y B, WANG W Q, CHEN H.Linear frequency diverse array manifold geometry and ambiguity analysis[J].IEEE Sensors Journal, 2015, 15(2):984-993.
|
[12] |
DAI M M, WANGB W Q, SHAO H Z.FDA radar ambiguity function optimization with simulated annealing algorithm[C]//Proceeding of APSIPA Annual Summit and Conference.Piscataway, NJ: IEEE Press, 2015: 741-743.
|
[13] |
WANG W Q, DAI M M, ZHENG Z.FDA radar ambiguity function characteristics analysis and optimization[J].IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3):1368-1380.
|
[14] |
王博, 谢军伟, 张晶, 等.子阵结构FDA阵列模糊函数建模与研究[J].空军工程大学学报, 2019, 20(4):42-48.
WANG B, XIE J W, ZHANG J, et al.Modeling and research of ambiguity function based on subarray-based FDA[J].Journal of Force Engineering University, 2019, 20(4):42-48(in Chinese).
|
[15] |
RICHARDS M.雷达信号处理基础[M].2版.北京:电子工业出版社, 2008.
RICHARDS M.Fundamentals of radar signal processing[M].2nd ed.Beijing:Publishing House of Electronics Industry, 2008(in Chinese).
|
[16] |
丁璐飞, 耿富录, 陈建春.雷达原理[M].4版.北京:电子工业出版社, 2010.
DING L F, GENG F L, CHEN J C.Radar principle[M].4th ed.Beijing:Publishing House of Electronics Industry, 2010(in Chinese).
|
[17] |
BASIT A, QURESHI I M, KHAN W, et al.Beam pattern synthesis for a cognitive frequency diverse array radar to localize multiple targets with same direction but different ranges[C]//Proceeding of 2016 13th International Bhurban Conference on Applied Sciences and Technology.Piscataway, NJ: IEEE Press, 2016: 682-688.
|
[18] |
黄玲, 贺知明, 李想, 等.基于差分阵列的频控阵雷达距离-角度联合估计[J].系统仿真学报, 2017, 29(4):886-893.
HUANG L, HE Z M, LI X, et al.Frequency diverse array radar for range-angle estimation based on difference co-array[J].Journal of System Simulation, 2017, 29(4):886-893(in Chinese).
|
[19] |
WASEEM K, IJAZ M Q, SARAH S.Frequency diverse array radar with logarithmically increasing frequency offset[J].IEEE Antennas and Wireless Propagation Letters, 2015, 14:499-502.
|
[20] |
GAO K D, WANG W Q, CAI J Y, et al.Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J].IET Microwaves, Antennas & Propagation, 2016, 10(8):880-884.
|
[21] |
王博, 谢军伟, 张晶, 等.基于非线性频偏的频控阵波束控制研究[J].北京理工大学学报, 2019, 39(3):311-319.
WANG B, XIE J W, ZHANG J, et al.Study of frequency diverse array beam control based on nonlinear frequency offset[J].Transactions of Beijing Institute of Technology, 2019, 39(3):311-319(in Chinese).
|
[1] | JI L B,ZHU Y,CUI T S,et al. LPI radar signal recognition based on time-frequency reassignment algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1324-1331 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0218. |
[2] | LIU B,HAO X H,QIN G L,et al. Sparse classification and recognition method of fuzed targets and jamming signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):498-506 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0071. |
[3] | QIN H L,ZHANG Y,SHI G T,et al. Doppler positioning technology based on Globalstar opportunity signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):360-367 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0013. |
[4] | LI S T,JIN X P,SUN J,et al. LPI radar signal recognition based on high-order time-frequency spectrum features[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):314-320 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0993. |
[5] | YANG Yong, LIU Jiaxiang, HUANG Shuying, WANG Xiaozheng, XIA Yukun. Multistage fuzzy discrimination and adaptive parameter fusion strategy for infrared and visible light image fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0383 |
[6] | QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642. |
[7] | TAN Ziyu, HAN Meng, HAN Xiao, ZHAO Shuo, JIANG Yuhan, LIN Yuzhen. A Method for Analyzing Pressure Fluctuation Signals Based on Wavelet Transform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0781 |
[8] | ZHAO Hong-jia, ZHANG Duo-na, LU Yuan-yao, DING Wen-rui. Intelligent Recognition of Electromagnetic Signal Modulation with Embedded Domain Knowledge[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0746 |
[9] | YUAN Jia-hui, CHEN Shui-fu, XIA Yu-chao, LIU Yi. Spatial correlation of along-wind fluctuating wind loads on rectangular high-rise buildings[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0828 |
[10] | SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647. |
[11] | YANG R R,ZHANG L,ZHAO J L,et al. Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):163-172 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0252. |
[12] | ZHANG Anqi, CAO Ronggang, ZHOU Yu, LI Jiawu, CAO Yuxi, YU Yongbin. Research on Fast and High Precision Signal Processing Method for FM Fuze Based on 2D-FFT and 2D-CFAR[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0827 |
[13] | GONG Fengxun, LIU Tao. Simplified S-mode signal pulse structure with kernel function constraints and TOA accuracy study[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0204 |
[14] | XU Q Y,MENG Y,LI S. Strain-based geometrically nonlinear beam modeling and analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2039-2049 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0627. |
[15] | HA Hui, GAO Xiang, YAO Xiu-juan, FU Jiang-yin, LI Wei, ZHANG Xiao-yan. Signal modulation waveform recognition method based on STF-Net[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0467 |
[16] | ZHANG P,ZHOU Q X,YU H Q,et al. Fast detection method of mental fatigue based on EEG signal characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):145-154 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0211. |
[17] | LI M M,LYU X D,WANG N,et al. Blind source extraction of complex non-Gaussian signals based on convolution linear mixture model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):212-219 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0197. |
[18] | SHI Pengliang, WANG Xiaoyu, XUE Rui. Purification method of satellite navigation signal based on array antenna beamforming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1906-1914. doi: 10.13700/j.bh.1001-5965.2021.0043 |
[19] | LI Liyuan, LI Ping, LI Guolin, ZHANG Guangwei. Classification of plateau shrub echo signal based on bispectrum analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2070-2078. doi: 10.13700/j.bh.1001-5965.2021.0075 |
[20] | QIN Honglei, LI Zhiqiang, ZHAO Chao. Fusion positioning based on Iridium/ORBCOMM signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1845-1853. doi: 10.13700/j.bh.1001-5965.2021.0041 |