WU Wenhai, SONG Liting, ZHANG Yang, et al. Analysis of factors affecting catapult take-off of carrier aircraft and design of lateral control law[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 662-671. doi: 10.13700/j.bh.1001-5965.2018.0481(in Chinese)
Citation: WU Wenhai, SONG Liting, ZHANG Yang, et al. Analysis of factors affecting catapult take-off of carrier aircraft and design of lateral control law[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 662-671. doi: 10.13700/j.bh.1001-5965.2018.0481(in Chinese)

Analysis of factors affecting catapult take-off of carrier aircraft and design of lateral control law

doi: 10.13700/j.bh.1001-5965.2018.0481
More Information
  • Corresponding author: WU Wenhai, E-mail: 441211638@qq.com
  • Received Date: 16 Aug 2018
  • Accepted Date: 15 Oct 2018
  • Publish Date: 20 Apr 2019
  • The various factors affecting the carrier aircraft catapult take-off safety are analyzed in detail. The nonlinear six-degree-of-freedom motion model of the aircraft in climbing phase is established. The effect of the rolling and yaw motion and crosswind on the catapult take-off characteristics is simulated and analyzed, and it is found that the main influences on the rolling and side-slip movement of the carrier aircraft after leaving the ship are the deck rolling motion and crosswind disturbance respectively. The nonlinear dynamic inverse control method is proposed to keep the nonlinear features of the model, make the result more precise, and realize the decoupling control of directional and lateral motion states. The simulation result indicates that the designed lateral control law can ensure that the rolling angle of the aircraft meets the safety criterion of not exceeding 5° within 3 seconds after leaving the ship and that there will be no obvious side-slip phenomenon due to crosswind disturbance, which can guarantee the safe take-off of carrier aircraft.

     

  • [1]
    王俊彦, 吴文海, 高丽, 等.舰载机弹射起飞建模与控制[J].飞机设计, 2010, 30(2):10-13.

    WANG J Y, WU W H, GAO L, et al.Modeling and control of launching and taking-off of shipboard aircraft[J].Aircraft Design, 2010, 30(2):10-13(in Chinese).
    [2]
    王萌辉, 赵波.舰载飞机起降动力学研究[J].飞机设计, 1997(1):21-33.

    WANG M H, ZHAO B.Research on dynamics of shipborne aircraft taking off and landing[J].Aircraft Design, 1997(1):21-33(in Chinese).
    [3]
    郭元江, 李会杰, 申功璋, 等.复杂环境下舰载机弹射起飞环境因素建模分析[J].北京航空航天大学学报, 2011, 37(7):877-881.

    GUO Y J, LI H J, SHEN G Z, et al.Modeling and analysis of the factors of launching and taking off of carrier-based aircraft in complex environment[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7):877-881(in Chinese).
    [4]
    贾忠湖, 高永, 韩维.航母纵摇对舰载机弹射起飞的限制研究[J].飞行力学, 2002, 20(2):19-21. doi: 10.3969/j.issn.1002-0853.2002.02.005

    JIA Z H, GAO Y, HAN W.Research on the limitation of aircraft carrier's panning to the launch of shipborne aircraft[J].Flight Dynamics, 2002, 20(2):19-21(in Chinese). doi: 10.3969/j.issn.1002-0853.2002.02.005
    [5]
    蔡丽青, 江驹, 王新华, 等.甲板运动对舰载机弹射起飞特性的影响[J].飞行力学, 2014, 32(2):105-109.

    CAI L Q, JIANG J, WANG X H, et al.Influence of deck motion on ejection characteristics of carrier aircraft[J].Flight Dynamics, 2014, 32(2):105-109(in Chinese).
    [6]
    王大海, 苏彬.舰面运动对弹射起飞特性的影响[J].飞行力学, 1994, 12(1):57-63. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX401.008.htm

    WANG D H, SU B.The influence of ship surface motion on ejection takeoff characteristics[J].Flight Dynamics, 1994, 12(1):57-63(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX401.008.htm
    [7]
    贺少华, 刘东岳, 谭大力, 等.载机舰船气流场相关研究综述[J].舰船科学技术, 2014, 36(2):1-7. doi: 10.3404/j.issn.1672-7649.2014.02.001

    HE S H, LIU D Y, TAN D L, et al.A review of research on airflow fields of carrier ships[J].Ship Science and Technology, 2014, 36(2):1-7(in Chinese). doi: 10.3404/j.issn.1672-7649.2014.02.001
    [8]
    林佳铭, 张轶, 乐挺, 等.非对称因素对舰载机弹射起飞安全的影响[J].北京航空航天大学学报, 2018, 44(2):363-374.

    LIN J M, ZHANG Y, LE T, et al.Influence of asymmetry on the safety of launching takeoff of carrier aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):363-374(in Chinese).
    [9]
    于浩, 聂宏.偏中心定位对弹射过程中飞机姿态的影响[J].北京航空航天大学学报, 2011, 37(1):10-14. doi: 10.3969/j.issn.1005-4561.2011.01.004

    YU H, NIE H.The influence of off-center positioning on the attitude of the aircraft during the ejection process[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1):10-14(in Chinese). doi: 10.3969/j.issn.1005-4561.2011.01.004
    [10]
    朱齐丹, 刘恒, 李晓琳.舰载机偏心情况下弹射起飞研究[J].飞行力学, 2016, 34(2):10-14.

    ZHU Q D, LIU H, LI X L.Research on catapult takeoff in shipborne engine eccentricity[J].Flight Dynamics, 2016, 34(2):10-14(in Chinese).
    [11]
    刘星宇, 许东松, 王立新.舰载飞机弹射起飞的机舰参数适配特性[J].航空学报, 2010, 31(1):102-108.

    LIU X Y, XU D S, WANG L X.Parameter adaptation characteristics of ship-based aircraft for catapult takeoff[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(1):102-108(in Chinese).
    [12]
    朱熠.舰载机起飞控制与仿真技术研究[D].南京: 南京航空航天大学, 2012.

    ZHU Y.Research on take-off control and simulation technology of carrier aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
    [13]
    朱熠, 江驹, 甄子洋, 等.舰载机弹射起飞上升段控制律研究[J].电光与控制, 2012, 19(2):13-16. doi: 10.3969/j.issn.1671-637X.2012.02.004

    ZHU Y, JIANG J, ZHEN Z Y, et al.Research on control law of shipborne aircraft launching and rising section[J].Electronics Optics & Control, 2012, 19(2):13-16(in Chinese). doi: 10.3969/j.issn.1671-637X.2012.02.004
    [14]
    严重中, 冯家波.舰载飞机弹射起飞上升段的自动控制飞行[J].南京航空航天大学学报, 1995, 27(4):431-438.

    YAN Z Z, FENG J B.Automatic control flight of shipborne aircraft ejection and take-up section[J].Journal of Nanjing University of Aeronautics and Astronautics, 1995, 27(4):431-438(in Chinese).
    [15]
    程世超.舰载机弹射起飞参数优化及自动控制飞行的研究[D].哈尔滨: 哈尔滨工程大学, 2012.

    CHENG S C.Study on parameters optimization and automatic control flight of aircraft launching and launching[D].Harbin: Harbin Engineering University, 2012(in Chinese).
    [16]
    Naval Air Systems Command.NATOPS flight manual navy model F/A-18E/F 165533 and up aircraft[M].Washington, D.C.:Department of the Navy, 2008.
    [17]
    吴文海.飞行综合控制系统[M].北京:航空工业出版社, 2007.

    WU W H.Flight integrated control system[M].Beijing:Aviation Industry Press, 2007(in Chinese).
    [18]
    COLLINSON R P G.Introduction to avionics systems[M].Berlin:Springer, 2009.
    [19]
    LUCAS C B.Catapult criteria for a carrier-based airplane: AD702814[R].Washington, D.C.: Naval Air Systems Command, 1968.
    [20]
    甄子洋, 江驹, 王新华, 等.舰载机不同弹射系统的弹射过程[J].电光与控制, 2012, 19(5):7-10. doi: 10.3969/j.issn.1671-637X.2012.05.002

    ZHEN Z Y, JIANG J, WANG X H, et al.The ejection process of different ejection systems for carrier-based aircraft[J].Electronics Optics & Control, 2012, 19(5):7-10(in Chinese). doi: 10.3969/j.issn.1671-637X.2012.05.002
    [21]
    胡淑玲, 林国锋.前起落架突伸对舰载机起飞特性的影响[J].飞行力学, 1994(1):28-34. http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX401.004.htm

    HU S L, LIN G F.Influence of the outrigger stretching on the takeoff characteristics of carrier aircraft[J].Flight Dynamics, 1994(1):28-34(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-FHLX401.004.htm
    [22]
    郑本武.前起落架突伸对舰载飞机弹射起飞航迹的影响[J].南京航空航天大学学报, 1994, 26(1):27-33. http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK401.003.htm

    ZHENG B W.Influence of the outrigger stretching on the cataclytic take-off track of shipborne aircraft[J].Journal of Nanjing University of Aeronautics and Astronautics, 1994, 26(1):27-33(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-NJHK401.003.htm
    [23]
    朱齐丹.航母舰载机安全起飞、着舰技术[M].哈尔滨:哈尔滨工程大学出版社, 2016:86-87.

    ZHU Q D.Safe take-off and landing technology of aircraft carrier aircraft[M].Harbin:Harbin Engineering University Press, 2016:86-87(in Chinese).
    [24]
    韩英华, 范彦铭.基于非线性动态逆的无人机自动着陆控制系统[J].航空学报, 2008, 29(增刊):66-72. http://www.cnki.com.cn/Article/CJFDTotal-HKXB2008S1010.htm

    HAN Y H, FAN Y M.Automatic landing control system for UAV based on nonlinear dynamic inversion[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(Sup.):66-72(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKXB2008S1010.htm
  • Relative Articles

    [1]WU H,ZHENG Y G,LIU M,et al. Overall design method of ground test equipment for engine dynamic air bleed of aircraft environmental control system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):573-583 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0014.
    [2]WANG H,LI X K,ZHANG H L,et al. Multi-UAV stereoscopic inclusion control based on dynamic scale observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):655-667 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0026.
    [3]WANG Y J,CHEN Q Y,GAO X Z,et al. Guidance and control method for dynamic net-recovery of UAV and the flight test verification[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):487-497 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0043.
    [4]GUO F,HAN W,LIU Y J,et al. Time uncertainty analysis on cyclic operation procedures of carrier aircraft based on MC-GERT[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):795-805 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0129.
    [5]ZHEN Chong, FENG Xinyu. Carrier-based aircraft direct lift control based on sliding mode observer and non-linear dynamic inversion technology[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0373
    [6]SUN X Z,WU J,SHI L X,et al. Dynamic force equalization for dual redundancy electro-mechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1208-1218 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0466.
    [7]DU Q F,JING W X,GAO C S,et al. Dual-loop control of mass-actuated quadrotor UAV considering dynamic characteristics of moving mass[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):861-873 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0350.
    [8]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [9]ZHUANG Nan-jian, YANG Xue-ya, GU Run-ping. Optimization of the Take-off Rotation Considering the Tail Striking Dynamic Limit Angle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0189
    [10]SHAO Haoyuan, LI Daochun, KAN Zi, XIANG Jinwu. Rigid-flexible coupling dynamics simulation of carrier-based aircraft arrested landing under direct lift control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0616
    [11]TAN J F,YANG Y X,ZHANG W G,et al. Influence of crosswind on helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3111-3122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0794.
    [12]ZHAI You-hong, LI Chun-tao, SU Zi-kang, LI Xue-bing. Neural network incremental dynamic inversion target drone somersault maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0690
    [13]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [14]LIU Y J,HAN W,SU X C,et al. Carrier aircraft landing scheduling problem based on improved gray wolf optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):803-813 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0280.
    [15]WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0265.
    [16]TANG Xin-min, LU Xiao-na. Longitudinal Autonomous separation Control of Aircraft in Random Wind Fields Based on MPC[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0414
    [17]LIU Ren-di, JIANG Ju, ZHANG Zhe, LIU Xiang. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0403
    [18]MA L Q,SUN X Z. Design of flight control system for BWB civil aircraft considering safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):804-814 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0341.
    [19]CUI K K,HAN W,LIU Y J,et al. Automatic wave-off control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):900-912 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0362.
    [20]JIN Z B,LI D C,SUN Y,et al. Man-machine cooperative control of helicopter and flight experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3022-3030 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0038.
  • Cited by

    Periodical cited type(4)

    1. 鲁鹏,朱齐丹,梁坤,杨智博,王毅,姚岚. 面向舰载机编队蒸汽弹射的汽缸结构优化设计. 郑州航空工业管理学院学报. 2023(02): 79-85 .
    2. 刘小飞,陈建平,张江华,童明波. 初始偏心距对舰载机弹射起飞的影响. 航空计算技术. 2022(02): 72-76 .
    3. 戚基艳,金嘉琦,邹姗姗. 舰载机无杆式牵引车纵向动力学分析. 兵器装备工程学报. 2020(01): 193-199 .
    4. ZHOU Jin,ZHU Jianhui,TONG Mingbo. Dynamics Analysis of Carrier-Based Aircraft with Off-Center Catapult Launch. Transactions of Nanjing University of Aeronautics and Astronautics. 2019(03): 468-478 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.5 %FULLTEXT: 21.5 %META: 77.5 %META: 77.5 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.8 %其他: 5.8 %其他: 0.2 %其他: 0.2 %Murfreesboro: 0.2 %Murfreesboro: 0.2 %Seattle: 0.1 %Seattle: 0.1 %上海: 1.2 %上海: 1.2 %六安: 0.1 %六安: 0.1 %北京: 2.0 %北京: 2.0 %十堰: 0.2 %十堰: 0.2 %南京: 0.3 %南京: 0.3 %南通: 0.2 %南通: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %天津: 0.3 %天津: 0.3 %宣城: 0.1 %宣城: 0.1 %常州: 0.2 %常州: 0.2 %延安: 0.1 %延安: 0.1 %张家口: 0.9 %张家口: 0.9 %扬州: 0.2 %扬州: 0.2 %新乡: 0.2 %新乡: 0.2 %无锡: 0.1 %无锡: 0.1 %昆明: 0.6 %昆明: 0.6 %杭州: 0.2 %杭州: 0.2 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.3 %沈阳: 0.3 %沧州: 0.1 %沧州: 0.1 %泰州: 0.1 %泰州: 0.1 %济南: 0.2 %济南: 0.2 %淄博: 0.1 %淄博: 0.1 %深圳: 11.0 %深圳: 11.0 %漯河: 0.9 %漯河: 0.9 %烟台: 0.1 %烟台: 0.1 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.7 %石家庄: 0.7 %红河: 0.1 %红河: 0.1 %芒廷维尤: 14.2 %芒廷维尤: 14.2 %芝加哥: 0.2 %芝加哥: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 56.2 %西宁: 56.2 %西安: 0.1 %西安: 0.1 %运城: 0.1 %运城: 0.1 %郑州: 0.3 %郑州: 0.3 %长沙: 0.7 %长沙: 0.7 %青岛: 0.3 %青岛: 0.3 %其他其他MurfreesboroSeattle上海六安北京十堰南京南通哈尔滨天津宣城常州延安张家口扬州新乡无锡昆明杭州汕头江门沈阳沧州泰州济南淄博深圳漯河烟台盐城石家庄红河芒廷维尤芝加哥衡阳衢州西宁西安运城郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(1031) PDF downloads(587) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return